HOKUGA 北海学園学術情報リポジトリ

学校法人北海学園 北 海 学 園 大 学 北 海 斎 科 大 学

タイトル	鋼板補強鉄筋コンクリート部材の材端モーメント~材 端回転角関係			
著者	串山, 繁; KUSHIYAMA, Shigeru			
引用	北海学園大学工学部研究報告(38): 53-65			
発行日	2011-02-14			

鋼板補強鉄筋コンクリート部材の材端モーメント 〜材端回転角関係

串山 繁*

Moment~Rotation Relationship of Reinforced Concrete Members with Steel Jacket

Shigeru Kushiyama*

要 旨

鉄筋コンクリート(RC)造構造物の非線形解析においては、スケルトンカーブを規定 する逆対称材としての材端モーメント~材端回転角関係($M ~ \theta$ 関係)が入力データとし て必要となる.日本建築学会では、多数の実験結果から得られた経験式に基づくひび割れ モーメント(M_c)、降伏モーメント(M_y)、割線剛性低下率(a_y)の算定式が規定されて いるが、鋼板などで補強されたRC部材の $M ~ \theta$ 関係を規定する算定式は提示されていな い、米国においては、鋼板補強の有無に拘わらず経験式に基づく類似の算定式は見当たら ない.

本報告では、耐震強度不足の柱を鋼板補強した際の解析用 $M \sim \theta$ 関係を規定する算定手 法および計算例を提示する.算定の基本方針としては、部材断面に作用する力の釣合条件 に基づき、モーメント〜曲率関係($M \sim \phi$ 関係)を定めた後、損傷区間と各区間の撓性を 評価して $M \sim \theta$ 関係を設定する.なお、使用したコンクリート、スチールの応力〜歪関係 は文献¹¹を参照して定めた.本報告提案の $M \sim \theta$ 関係は、既に共同研究論文²¹で使用されて いるが、その詳細については未公表レポート³¹或いは公表レポート⁴¹の付録として記された のみであった為、今回公表することとした.

1 計算仮定

M~ Ø 関係の計算仮定

- (1) 部材断面に生じる縦歪は、中立軸からの距離に比例する直線分布とする.
- (2) コンクリートの引張応力は無視する.
- (3) コンクリート,鉄筋の応力~歪曲線は,文献¹⁾にならい図-1,2に示す様に仮定する.

^{*} 北海学園大学工学部建築学科

^{*} Department of Architecture and Building Engineering, Faculty of Engineering, Hokkai-Gakuen University

詳細については次節参照.

M~θ関係の計算仮定

(1) 部材の曲げモーメント分布は直線的に変化する.

(2) 材料特性, 断面形状は材軸に沿って一様である.

この*M*~ *θ*関係の算定条件下では,部材中間部の損傷は材端の損傷より小さいことを意味 し,中間荷重が作用する場合,或いは配筋が部材端部と中央部で異なる場合でも部材を分割す ることによって比較的容易に対処できる.

 $\square - 2$ Stress-strain relationship for steel

2 コンクリート,鉄筋の応力~歪曲線

(a) コンクリートの応力~歪曲線

コンクリートの応力~歪曲線は、せん断補強筋に囲まれたコンファインドコンクリート部分 と外側のカバーコンクリート部分を区別して次式で定義する.

コンファインドコンクリートの応力~歪曲線:
$$f_{c} = \frac{f_{cc} xr}{r - 1 + x^{r}}$$
 ($\varepsilon_{c} \le \varepsilon_{cu}$) ~ (1)

$$f_{\ell'} = K_{e} f_{yh} \left(\rho_{x} + \rho_{y} \right), \quad K_{e} = 0.75, \quad \rho_{x} = \frac{2A_{sp}}{D's}, \quad \rho_{y} = \frac{2A_{sp}}{b's} \quad (矩形断面に対して)$$

b':コンファインドコンクリートの幅, D':コンファインドコンクリートの高さ

$$\begin{split} \varepsilon_{cu} &= 0.004 + \frac{1.4\rho_s f_{yh} \varepsilon_{su}}{f_{cc'}}, \ \varepsilon_{su} : 鉄筋の最大引張歪 \\ \rho_s &= \frac{4A_{sp}}{D's} \ (円形, 楕円形断面), \ \rho_s = \rho_s + \rho_y \ (矩形断面) \end{split}$$

カバーコンクリートの応力~歪曲線: $f_{c} = \frac{f_{cc} xr}{r-1+x^{r}}$ ($\varepsilon_{c} < 2\varepsilon_{c0}$) ~ (3)

(2) 式に $f_{\ell} = 0$ を代入し、 $f_{cc} = f_{c}$ として(3) 式を評価

 $f_{\epsilon} = (3)$ 式に接する直線式 $(2\epsilon_{\epsilon 0} \le \epsilon_{\epsilon} \le \epsilon_{sp}), f_{\epsilon} = 0$ $(\epsilon_{\epsilon} \ge \epsilon_{sp})$

なお、鋼板で補強された場合にはせん断補強筋と鋼板の間は拘束効果を期待できるので、せん断補強筋で囲まれた内部とは異なるコンファインドコンクリートの応力~歪曲線と考える。 即ち、外側のコンファインドコンクリートについては補強鋼板のせん断補強筋としての断面積 *A*_s,内部のコンファインドコンクリートについては補強鋼板+せん断補強筋の断面積*A*_sを考 慮して、有効横方向拘束応力f_cを定める。

(b) 鉄筋の応力~歪曲線

鉄筋の応力~歪曲線は、次式で定める歪硬化を考慮したモデルとする.

鉄筋の応力~歪曲線:
$$f_s = E_s \varepsilon_s$$
 ($\varepsilon_s < \varepsilon_y$)
 $f_s = f_y$ ($\varepsilon_s < \varepsilon_s$)
 $f_s = f_y$ ($\varepsilon_s < \varepsilon_s < \varepsilon_{sh}$)
 $f_s = f_y \left[1.5 - 0.5 \left(\frac{0.12 - \varepsilon_s}{0.112} \right)^2 \right]$ ($\varepsilon_{sh} < \varepsilon_s \le \varepsilon_{su}$)
ただし, $\varepsilon_{sh} = 0.008$, $\varepsilon_{su} = 0.12$, $f_y = 1.1 \times$ 公称値と仮定

3 *M~* φ 関係の算定

(a) *M*_c, φ_cの算定

*M*_eを部材断面に作用する力の釣合条件に基づき,引張側最外端のコンクリート引張応力が コンクリートの引張強度に達した時にひび割れが生ずるとして求めると,多くの場合*M*_eは非 常に小さい値になる.そこで,*M*_eのみ例外的に以下の算定式によることとした.

$$M_{c} = \left\{ f_{t} + \frac{P}{A_{c} + (E_{s}/E_{c} - 1)A_{s}} \right\} Z \qquad \sim (4)$$

ただし、 $f_t = 9.0\sqrt{f_{e'}}$: コンクリートの引張強度

f_c: コンクリート4週圧縮強度
 P: 鉛直荷重が作用した場合の柱軸力.梁の場合は通常0とする.
 A_c: 部材断面積(矩形:bD, 楕円:πab,a,bは長軸, 短軸半径)
 A_s = A_s + A_s, A_s : 圧縮鉄筋総断面積, A_s : 引張鉄筋総断面積

$$Z = \frac{I_Z}{(D/2)}$$
: 断面係数

 $I_{z} = I_{e} + I_{s}$:換算断面 2 次モーメント I_{e} : コンクリート強軸廻り断面 2 次モーメント (矩形: $bD^{3}/12$,楕円: $\pi ba^{3}/4$)

$$I_{s} = (E_{s}/E_{c}-1)\sum_{i=1}^{n} A_{sp}^{i} \left(\frac{D}{2}-dp^{i}\right)^{2} + (E_{s}/E_{c}-1)\sum_{i=1}^{m} A_{st}^{i} \left(d^{i}-\frac{D}{2}\right)^{2}$$

:多段配筋の鉄筋分(*n*;圧縮側段数,*m*;引張側段数) ひび割れ時の曲率かは,次式から求めた.

$$\phi_c = \frac{M_c}{EI} \qquad \sim (5)$$

ただし, EI:弾性時の曲げ剛性

ひび割れた瞬間には,引張側コンクリートの断面2次モーメントへの寄与分が喪失すること を踏まえると,上記のかはひび割れる瞬間直前の曲率に相当する.

(b) *M*_ν, φ_νの算定

*M*_yの算定値は,引張側のどの段の鉄筋が降伏する瞬間なのかで異なる.即ち,*M*_yの値が複 数存在することになる.部材に作用する軸力*P*が同一の条件下では,引張側最外端に近い外側 の鉄筋が降伏するとした場合よりも,内側の鉄筋が降伏するとした場合の方が既にそれより外 側の鉄筋が降伏歪を越えているので,*M*_yはより大きい値を示す.

したがって想定しうる全ての場合について、コンファインドコンクリートの圧縮上縁の歪度

が ε_{cu} になると同時に該当段の鉄筋が降伏する瞬間の釣合鉄筋状態の M_y と軸力Pを算定する. それ以降の後続計算では,該当段の鉄筋が降伏歪を維持した状態で,中立軸cを漸次低減させ ながら(即ち,コンクリート圧縮上縁の歪度 ε_{upper} を ε_{cu} から低減させながら)モーメントと軸 力を算定し,最終的にモーメント〜軸力($M \sim P$)インターラクションカーブを描く.多段配 筋となっている場合には通常複数の M_y に関するインターラクションカーブが得られる.

一方,縦歪 ϵ は曲率 ϕ と中立軸からの距離の積cに等しい($\epsilon = \phi c$)ので,降伏時の曲率 ϕ_y は次式で表わされる.

$$\phi_y = \frac{\varepsilon_{upper}}{c} \qquad \sim (6)$$

ただし、中立軸はカバーコンクリートの圧縮上縁を起点とした距離とする.補強鋼板無しの 場合、最大圧縮歪 ε_{cu}時には、図-1に示した応力~歪曲線から分かるようにカバーコンクリ ート部は既に破壊し耐力を失っているので、コンファインドコンクリートの圧縮上縁を起点と すべきであるが、簡単化のためこのように仮定した.

鉛直荷重により生ずる軸力*P*が作用したときの*M_y*, *φ_y*は,軸力*P*の直線とインターラクションカーブの交点として求められる.このように*M*~*P*インターラクションカーブを作成すれば,部材に作用する軸力が異なる場合でも即座に対応する*M_y*, *φ_y*を算定できる.

$(c) M_{max}, \phi_{max}$ の算定

最大耐力時モーメント (M_{max}) は次の手順で求める.最初に引張側最外端一段目の鉄筋が 降伏すると同時にコンファインドコンクリートの圧縮縁の歪が ε_{cu} になるときの釣合鉄筋状態 のモーメント M_b と釣合中立軸位置 c_b を求める.これは先に示した M_y 値のひとつ (**図**-4に 示す $M \sim P$ インターラクションカーブ上の〇印)と一致する.一方,純圧縮状態の最大耐力は **図**-3に示すように圧縮歪の変動域を考慮した最大値 (**図**-4に示す $M \sim P$ インターラクショ ンカーブ縦軸上の〇印に対応)となる.先に仮定したコンクリート,鉄筋の応力~歪曲線の場 合,純圧縮状態の最大耐力はコンクリート全断面の圧縮歪が ε_{cu} に等しいときに生起していな いことに留意する必要がある.

次いで、コンファインドコンクリートの圧縮縁の歪が ε_{cu} を維持しながら、中立軸位置 $c\varepsilon$ 釣合中立軸位置 c_b から増大させて次第に純圧縮状態に近づく方向と、反対に釣合中立軸位置 c_b から低減させて次第に純曲げ状態(軸力P=0)に近づく方向の2つに分けて M_{max} を算定し、最大耐力時の-M - Pインターラクションカーブ(図ー4に示す縦軸と横軸を繋ぐ曲線)を描く、図ー4は、(b)、(c)の計算から得られたインターラクションカーブの一例である。同図から分かるように、必ずしも最大耐力時のインターラクションカーブが降伏時のそれに較べて常に全域で大きいとは限らない、これは、コンクリート、鉄筋の応力~歪曲線の形状に依存

するためである.

最大耐力時の曲率 ømaxは、降伏時にならい次式で表わされる。

$$\phi_{\max} = \frac{\varepsilon_{cu}}{c} \qquad \qquad \sim (7)$$

鉛直荷重による軸力Pが作用するときの M_{max} , ϕ_{max} は,降伏時の場合と同様,軸力Pの直線 式と最大耐力時の $M \sim P$ インターラクションカーブとの交点(**図**-4の+記号)として容易に 求めることができる.以上(a),(b),(c)の計算から得られた $M \sim \phi$ 関係は, $M_y \sim \phi_y$ の組合 せが複数個発生するので,**図**-5に示すような複数の折点を有する折線グラフとなる.

 \boxtimes - 3 Maximum axial force under pure compressive condition

4 *M~θ*関係の算定

以下に材端回転角を得るための基本式の誘導について説明する. $M \sim \theta$ 関係は、逆対称材と してのそれであり、モーメント分布は直線的に変化するものと仮定している.したがって、材 端モーメントが M_c に一致したときの回転角が θ_c , M_y に一致したときが θ_y , M_{max} に一致した

ときがθmaxとなる.

材端回転角θを求める際の基本的な考え方は、次のようである.

- (1) M~ φ関係を表わす折線グラフの勾配を求め、その逆数の値から弾性領域、ひび割れ~
 降伏領域、降伏~最大耐力領域の各撓性を求める。
- (2)モーメント分布図から上記損傷区間の定義域を定め、該当区間の撓性に応じて個々の損 傷区間の材端回転角寄与分を求める.全ての区間に関する寄与分を加算して材端回転角 とする.

(a) 材軸に沿う曲率分布,曲げ撓性分布

材端モーメント~材端回転角関係の定式化に先立ち,材軸に沿う曲率分布,曲げ撓性分布について記す.図-5に示したように,多段配筋の場合複数の降伏モーメントが生起することがあるが,ここでは簡単のために降伏モーメントがひとつだけ存在する場合を例に説明する.

曲げモーメント分布が図ー6(a)に示すようであるとき,対応する材軸に沿う曲率の分布 は模式的に図ー6(b)に示すように表わされる.ただし,曲率が*M*_eに対応するところで不 連続となっているのは,次式に示すようにひび割れた瞬間にコンクリートの引張応力負担分が 喪失し,断面2次モーメントが*I*から*L*_eに減少するためである.

ひび割れ瞬間直前: $\phi_c = \frac{M_c}{EI}$, ひび割れ瞬間直後: $\phi_c = \frac{M_c}{EI_c}$

一方, 材端の曲げモーメントが図-7 (a) に示すように M_c, M_y, M_{max} と次第に増大する と, 曲げ剛性の逆数として得られる撓性の分布は図-7 (b) に示すように進展する. このと き曲げ剛性は図中に示すように, 部材が弾性ならばEI, ひび割れ~降伏領域ならばaEI, 降 伏~最大耐力領域ならば βEI と表わされ, これらの値は図-5に示した $M \sim \phi$ 関係から得られ る折線の勾配に相当する. したがって, 撓性は各損傷域で一定値をとり, 撓性は損傷が大であ る領域程弾性時の値より大きい値となる. なお, 降伏モーメントが複数個ある場合には, 対応 する β の値も複数個となり, 上記の降伏~最大耐力の損傷域が更に細かな損傷領域に分割され る.

(b) 材端モーメント~材端回転角関係

材軸に沿った断面の曲げ剛性分布を $EI(\xi)$, A'端, B'端の材端モーメントが, $M_{A'}$, $M_{B'}$ の ときの任意点曲げモーメントを $M(\xi) = M_{A'} - (M_{A'} + M_{B'})\xi$ と置くと, A'端に単位モーメント を与えたときの曲げモーメントは $\overline{M}_A(\xi) = 1 - \xi$, 同様にB'端に与えたときの曲げモーメント は $\overline{M}_B(\xi) = -\xi$ であるから, 仮想仕事の原理からA'端, B'端の材端回転角は次式で表わされ る.

$$\theta_{A'} = L' \int_0^1 \frac{M(\xi) \overline{M}_A(\xi)}{EI(\xi)} d\xi \qquad \sim (8)$$

ただし, L': クリアースパン長

$$\theta_{B'} = L' \int_0^1 \frac{M(\xi) \overline{M}_B(\xi)}{EI(\xi)} d\xi \qquad \sim (9)$$

したがって,任意損傷区間の撓性を図-8に示すように仮定した場合,A'端の材端回転角 への寄与分は次式で表わされる.

$$\theta_{A'} = \frac{L'}{rEI} \int_a^b M\left(\xi\right) (1-\xi) \, d\xi \qquad \sim (10)$$

ただし,
$$r=1, \alpha, \beta$$
のいずれかの値

$$M(\xi) = M_{A'} - (M_{A'} + M_{B'})\xi$$

ここで材端モーメントを $M_{A'} = M_{B'} = M_e$ と置くと、全域弾性であるから撓性は1/EIとなり、積分区間 $0 \le \xi \le 1$ を考慮すると、積分して得られる材端回転角(ひび割れ回転角)は次式で表わせられる.

$$\theta_c \left(=\theta_{A'}\right) = \frac{L'}{EI} \int_0^1 \left(M_c - 2M_c \xi\right) (1 - \xi) d\xi = \frac{L' M_c}{6EI} \qquad \sim (11)$$

この値は、弾性時の逆対称材の回転角に一致していることが分かる.

降伏時の θ_{ν} については、両材端モーメントが降伏モーメントに一致するときの回転角を求 めればよい. 図-7 (b) を参照すると、両端のひび割れ領域と部材中間弾性領域の3つの損 傷区間に関する材端回転角への寄与分を考慮すればよいことが分かる.この場合には(10)式 において $M(\xi) = M_y - 2M_y \xi$,積分区間を $0 \sim \lambda, \lambda \sim (1-\lambda), (1-\lambda) \sim 1$,ただし $\lambda = (1 - M_c/M_y)/2$ と置いて積分し、3つの寄与分を加えてA'端の材端回転角とすればよい.なお、先の M_y 、 ϕ_y の算定で述べたように M_y の値が複数個存在する場合もあり得るが、上記の説明は M_y の値がひ とつだけ存在する場合或いは M_y の最小値に等しい場合に当てはまる。第2番目以降の M_y が存 在する場合および最大耐力時の取り扱いは次の通りである.

第2番目以降の降伏モーメントまたは最大耐力時モーメントを*M*と置くと,

 $M(\xi) = \tilde{M} - 2\tilde{M}\xi, \quad 積 for lift \\ \delta 0 \sim \mu_i, \quad \mu_i \sim \mu_{i-1}, \quad \cdots, \quad \mu_2 \sim \mu_1, \quad \mu_1 \sim \lambda, \quad \lambda \sim (1-\lambda), \\ (1-\lambda) \sim (1-\mu_1), \quad (1-\mu_1) \sim (1-\mu_2), \quad \cdots, \quad (1-\mu_{i-1}) \sim (1-\mu_i), \quad (1-\mu_i) \sim 1 \quad t \quad t \quad l \quad , \\ \lambda = (1-M_c/\tilde{M})/2, \quad \mu_j = (1-M_{y,j}/\tilde{M})/2, \quad z = \tilde{\sigma}_j = 1-i, \\ M_{y,i} > M_{y,i-1} > \cdots > M_{y,1} \\ \geq l \quad k = 0 \quad k$

図ー9は、以上の方法で得られたクリアースパン長L' = 180(inch)とした場合の $M \sim \theta$ 関係の一例である. RC部材の非線形解析では、上記で得られた $M \sim \theta$ 関係を更にtri-linearの折線に近似して解析に取り込むなどすればよい.

 $\boxtimes -7$ The progress of flexibility corresponding to moment

5 計算例

解析モデルは,表-1に示す5通りとした.また,入力共通データは表-2,個別データは 表-3に示すように与えた.

解析モデル名	鋼板補強前形状	鋼板補強後形状	鋼板補強の有無
Case – 1	円形断面	_	無し
Case – 2	円形断面	円形断面	有り
Case – 3	矩形断面	_	無し
Case – 4	矩形断面	円形断面	有り
Case – 5	矩形断面	楕円形断面	有り

表一1 解析モデル

衣一 2 人力共通 7 二 9					
クリアースパン長:L'	180 (inch)				
鉛直荷重による軸力	600 (kips)				
コンクリート強度: <i>f</i> _	4000 (psi)				
コンクリートのヤング係数: <i>E</i> c	$6000\sqrt{f_{c'}}$ (psi)				
スチールのヤング係数:Es	29000 (ksi)				
鉄筋降伏応力: f,	66000 (psi)				
鉄筋終局引張歪:ε _{su}	0.12				
補強鋼板板厚:te	0.5 (inch)				
せん断補強筋の直径:dhoop	0.5 (inch)				
せん断補強筋間隔:s	1.8097 (inch)				
軸鉄筋の直径:dbl	1.69 (inch)				
せん断補強筋断面積:Asp	$\pi \times (\text{dhoop}/2) \ 2 (\text{inch}^2)$				

表-2 入力共通データ

表一3 個別データ

円形断面		矩形断面	
外径 (=直径+grout gap):D	62 (inch)	幅×せい:b×D	50×50 (inch)
confined concreteの直径:D'	56 (inch)	幅×せい:b×D	40×50 (inch)
各段軸鉄筋本数:nbar	20	confined conc.幅×せい	$46{ imes}46$ (inch)
各段軸鉄筋芯間迄の半径:bra	D'/2 -dhoop -dbl/2 (inch)	confined conc.幅×せい	36×46 (inch)
鋼板補強無し内部拘束効果: Ps	$4A_{sp}/D's$	楕円の短軸半径:α	$b/\sqrt{2}$ (inch)
鋼板補強有り内部拘束効果: Ps	$4t_c/D + 4A_{sp}/D'_S$	楕円の長軸半径:β	$D/\sqrt{2}$ (inch)
補強有り円形断面外の拘束効果 :cov_の。	$4t_c/D$	補強有り矩形断面~楕円の拘束効 果:cov_ ^ρ 。	$2t_c/\sqrt{lpha imeseta}$

なお,**表-3**の楕円短軸半径α,長軸半径βは,楕円が長方形断面の四隅を通り,楕円面積 が長方形と等価な面積を与える正方形断面の外接円面積に等しくなるように与えた.

図-10~図-14に計算結果を示す.これらの図を比較すると、次のことが分かる.

- 1) 軸力~歪の関係から,補強鋼板の存在により,コンファインドおよびカバーコンクリート の耐力上昇が認められる.
- 2)補強鋼板の存在により, *M*~*P*インターラクションカーブの改善がみられる.円形断面鋼 板補強の場合で耐力は約2倍弱,矩形断面の円形鋼板補強の場合で耐力は約3.7倍に増大 することが分かる.
- 3)上記に伴いモーメント~曲率関係、モーメント~回転角関係も縦軸のオーダーが×10⁴から×10⁶に変わっていることに注意すると、円形断面では降伏以降の剛性増大、矩形断面では降伏点の上昇および降伏以降の剛性増大が認められる。

 \boxtimes -10 Case -1 : Circular section without steel jacket

 $\square -11$ Case-2: Circular section with steel jacket

繁

 $\square -12$ Case-3: Rectangular section without steel jacket

⊠-13 Case-4 : Rectangular section with steel jacket

0.06

0.06

☑—14 Case–5: Rectangular section with elliptical steel jacket

20

10

0

-10

-20

8

4 2

0

2

1.5

1

0.5

10

8 6 4

Moment (kip-in)

Pn (kip)

Stress (psi) 6

6 まとめ

鋼板補強された鉄筋コンクリート(RC)部材の非線形解析入力基礎データとなるモーメン ト~回転角関係を規定する算定手法を示し,円形断面,矩形断面の補強計算例を用いて鋼板補 強の有無によるモーメント~回転角関係などの相違について考察した.部材断面の形状につい ては,本報告で示した以外についても同様の考え方で扱うことが可能である⁴.

ただし、本報告で考慮したRC部材は鋼板補強前に著しい損傷を受けておらずコンクリート、鉄筋の材料特性が概ね健全であると見做し得ることを前提としている。今後の課題としては、著しい損傷を受けたRC部材に適用できるコンクリート、鉄筋の材料特性モデルの開発が必要と思われる.

なお、この研究はUniversity of California, Irvineの篠塚正宣教授の下でプロジェクトチームに 参加させて戴いた際、著者が担当遂行したものです.この様な機会を与えて下さった篠塚正宣 教授に感謝申し上げます.

参考文献

- 1) M. J. N. Priestley, F. Seible, G. M. Calvi : Seismic Design and Retrofit of Bridge, John Wiley & Sons, Inc., 1996.
- 2) M. Shinozuka, S. Kushiyama et al. : Fragility curves of concrete bridges retrofitted by column jacketing, Earthquake Engineering and Engineering Vibration, Vol.1, No.2, December, 2002.
- 3) S. Kushiyama : Calculation of Moment-Rotation Relationship of Reinforced Concrete Member with/without Steel Jacket, Unpublished Report at University of Southern California, CA, USA., 2002.
- 4) M. Shinozuka, Swagata Banerjee, Sang-Hoon Kim : Statistical and Mechanistic Fragility Analysis of Concrete Bridges, Technical Report MCEER-07-0015, September 10, 2007.