HOKUGA 北海学園学術情報リポジトリ

タイトル	Algebraic Properties of Singular Integral Operators on L2 with Cauchy Kernel
著者	YAMAMOTO, Takanori
引用	北海学園大学学園論集(173・174): 1-8
発行日	2017-12-25

Algebraic Properties of Singular Integral Operators on L^2 with Cauchy Kernel

Takanori YAMAMOTO

This paper is dedicated to the memory of late Professor Takayuki Furuta

Mathematics Subject Classification (2010). 45E10; 47B35; 47B20; 30D55.

Keywords. Singular integral operator, Toeplitz operator, Hardy space, hyponormal operator.

Abstract. Let α and β be functions in L^{∞} (\mathbb{T}), where \mathbb{T} is the unit circle. Let P denote the orthogonal projection from L^2 (\mathbb{T}) onto the Hardy space H^2 (\mathbb{T}), and Q = I - P, where I is the identity operator on L^2 (\mathbb{T}). This paper is concerned with the singular integral operators $S_{\alpha,\beta}$ on L^2 (\mathbb{T}) of the form $S_{\alpha,\beta} f = \alpha P f + \beta Q f$, for $f \in L^2$ (\mathbb{T}). In this paper, we study the hyponormality of $S_{\alpha,\beta}$ which is related to the Toeplitz operator on H^2 (\mathbb{T}).

1. Introduction

For $1 \le p \le \infty$, $L^p = L^p$ (T) denotes the usual Lebesgue space on the unit circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ and $H^p = H^p$ (T) denotes the usual Hardy space on T. If p = 2, then $\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{ix}) \bar{g}(e^{ix}) dx$ and $\|f\| = \|f\|_2$. Let $z = e^{ix}$, let $H^2 = zH^2$, and let $H^{2\perp} = L^2 \ominus H^2$. Then $H^{2\perp} = \overline{H^2_0}$. Let P denote the orthogonal projection of L^2 onto H^2 . Let I denote the identity operator on L^2 , and let Q = I - P. Then Q is an orthogonal projection of L^2 onto $H^{2\perp}$. In L^2 , the sequence e_n , defined as $e_n(e^{ix}) = e^{inx}$, $n \in \mathbb{Z}$, is an orthonormal sequence. Here the n-th Fourier coefficient of f is defined by $\langle f, e_n \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{ix}) e^{-inx} dx = \hat{f}(n) = f_n$. Let P_0 denote the rank one orthogonal projection of L^2 onto \mathbb{C} such that $(P_0 f)(z) = \hat{f}(0)(f \in L^2)$. Let $I_0 = I - P_0$. For $\alpha \in L^\infty$, let M_α denote the

²⁰⁰⁰ Mathematics Subject Classification. 45E10; 47B35; 47B20; 30D55.

Key words and phrases. Singular integral operator, Toeplitz operator, Hardy space, hyponormal operator.

This research was supported by Grant-in-Aid Scientific Research No.24540155 and Research Grant in Hokkai-Gakuen University.

multiplication operator on L^2 such that $M_{\alpha}f = \alpha f$, $(f \in L^2)$, let T_{α} denote the Toeplitz operator on H^2 such that

$$T_{\alpha}f = P(\alpha f), (f \in H^2),$$

let \tilde{T}_{α} denote the operator on $H^{2\perp}$ such that

$$\tilde{T}_{\alpha}f = Q(\alpha f), (f \in H^{2\perp}).$$

let H_{α} denote the Hankel operator of H^2 to $H^{2\perp}$ such that

$$H_{\alpha}f = Q(\alpha f), (f \in H^2)$$

and let \tilde{H}_{α} denote the operator on $H^{2\perp}$ to H^2 such that

$$\tilde{H}_{\alpha}f = P(\alpha f), (f \in H^{2\perp}).$$

Then $\tilde{H}_{\phi} = H_{\overline{\phi}}^*$. For $\alpha, \beta \in L^{\infty}$, let $S_{\alpha,\beta}$ denote the singular integral operator on L^2 such that

$$S_{\alpha,\beta}f = \alpha Pf + \beta Qf, (f \in L^2).$$

Then

$$(S_{\alpha,\beta}f)(z) = \frac{\alpha(z) + \beta(z)}{2} f(z) + \frac{\alpha(z) - \beta(z)}{2} \frac{1}{\pi i} \int_{\mathbb{T}} \frac{f(\tau)}{\tau - z} d\tau,$$

where the integral is understood in the sense of Cauchy's principal value (cf. [6], p.12). If $f \in L^1$, then $(S_{\alpha,\beta}f)(z)$ exists for almost all $z \in \mathbb{T}$. The normality of $S_{\alpha,\beta}$ was established by Nakazi and the author [27]. An operator A is called hyponormal if its self-commutator $[A^*, A] = A^*A - AA^*$ is positive. When $\alpha - \beta$ is a constant, then $S_{\alpha,\beta}$ is hyponormal if and only if $S_{\alpha,\beta}$ is normal ([13]). In this paper, we study the hyponormal operator $S_{\alpha,\beta}$.

2. HYPONORMAL SI-OPERATOR

In this section, when β is a complex number, the conditions of symbols α and β of hyponormal operators $S_{\alpha,\beta}$ are determined using Toeplitz operators and Hankel operators.

Lemma 1.1. Let α and β be in L^{∞} . Suppose $S_{\alpha,\beta}$ is a hyponormal operator.

- (1) If $\overline{\alpha}$ is in H^{∞} , then $\overline{\beta}$ is in H^{∞} , and for all $f_2 \in H^{2\perp}$, $\|\tilde{H}_{\overline{\alpha}}f_2\| \leq \|\tilde{H}_{\overline{\beta}}f_2\|$.
- (2) If β is in H^{∞} , then α is in H^{∞} , and for all $f_1 \in H^2$, $||H_{\overline{\delta}}f_1|| \le ||H_{\overline{\alpha}}f_1||$.

Proof. For all f in L^2 , $S_{\alpha,\beta}^* f = P(\bar{\alpha}f) + Q(\bar{\beta}f)$. Since $S_{\alpha,\beta}$ is hyponormal, it follows that for all $f_1 \in H^2$ and $f_2 \in H^{2\perp}$,

Algebraic Properties of Singular Integral Operators on L² with Cauchy Kernel (Takanori YAMAMOTO)

$$\begin{split} &0 \leq \langle (S_{\alpha,\beta}^* S_{\alpha,\beta} - S_{\alpha,\beta} S_{\alpha,\beta}^*) (f_1 + f_2), f_1 + f_2 \rangle \\ &= \|S_{\alpha,\beta} (f_1 + f_2)\|^2 - \|S_{\alpha,\beta}^* (f_1 + f_2)\|^2 \\ &= \|\alpha f_1 + \beta f_2\|^2 - \|P_{\alpha}^{-} (f_1 + f_2)\|^2 - \|Q_{\beta}^{-} (f_1 + f_2)\|^2. \end{split}$$

Therefore, for all $f_1 \in H^2$,

$$0 \le \|\overline{\alpha}f_1\|^2 - \|P\overline{\alpha}f_1\|^2 - \|Q\overline{\beta}f_1\|^2$$
$$= \|Q\overline{\alpha}f_1\|^2 - \|Q\overline{\beta}f_1\|^2,$$

and for all $f_2 \in H^{2\perp}$,

$$0 \le \|\overline{\beta}f_2\|^2 - \|P\overline{\alpha}f_2\|^2 - \|Q\overline{\beta}f_2\|^2$$
$$= \|P\overline{\beta}f_2\|^2 - \|P\overline{\alpha}f_2\|^2.$$

Suppose \overline{a} is in H^{∞} . Since for all $f_1 \in H^2$, $\|Q\overline{\beta}f_1\| \le \|Q\overline{\alpha}f_1\|$, this implies that $Q\overline{\beta}f_1 = 0$, and hence $\overline{\beta}$ is in H^{∞} . Hence (1) holds.

Suppose β is in H^{∞} . Since for all $f_2 \in H^{2\perp}$, $\|P\overline{\alpha}f_2\| \leq \|P\overline{\beta}f_2\|$, this implies that $P\overline{\alpha}f_2 = 0$, and hence α is in H^{∞} . Hence (2) holds.

Lemma 1.2. Let α be in L^{∞} , and let β be a complex number. Then for all $f_1 \in H^2$ and $f_2 \in H^{2\perp}$,

$$(S_{\alpha,\beta}^*S_{\alpha,\beta} - S_{\alpha,\beta}S_{\alpha,\beta}^*)(f_1 + f_2) = P|\alpha|^2 f_1 - \alpha P_{\alpha}\overline{f_1} + (\beta - \alpha)P_{\alpha}\overline{f_2} + \overline{\beta}Q\alpha f_1.$$

Proof. Let $A = S_{\alpha,\beta}$. Then

$$A^*A(f_1+f_2) = A^*(\alpha f_1 + \beta f_2) = A^*(\alpha f_1) + A^*(\beta f_2)$$

$$= P_{\alpha}^{-} \alpha f_1 + Q_{\beta}^{-} \alpha f_1 + P_{\alpha}^{-} \beta f_2 + Q_{\beta}^{-} \beta f_2$$

$$= P|\alpha|^2 f_1 + \overline{\beta} Q \alpha f_1 + \beta P_{\alpha}^{-} f_2 + |\beta|^2 f_2.$$

and

$$AA^*(f_1+f_2) = AP\overline{\alpha}(f_1+f_2) + AQ\overline{\beta}(f_1+f_2)$$
$$= \alpha P\overline{\alpha}(f_1+f_2) + \beta Q\overline{\beta}(f_1+f_2)$$
$$= \alpha P\overline{\alpha}f_1 + \alpha P\overline{\alpha}f_2 + |\beta|^2 f_2.$$

Hence

$$(A^*A - AA^*)(f_1 + f_2) = P|\alpha|^2 f_1 - \alpha P\overline{\alpha} f_1 + (\beta - \alpha) P\overline{\alpha} f_2 + \overline{\beta} Q\alpha f_1.$$

Theorem 1.1. Let α be in L^{∞} and let β be a complex number. Then $S_{\alpha,\beta}$ is hyponormal if and only if T_{α} is analytic.

Proof. Suppose $S_{\alpha,\beta}$ is hyponormal. Since β is a complex number, it follows from Lemma 1.1 (2), that α is in H^{∞} , and hence T_{α} is analytic. Conversely suppose T_{α} is analytic. Then α is in H^{∞} . Let $A = S_{\alpha,\beta}$. By Lemma 1.2, for all $f_1 \in H^2$ and $f_2 \in H^{2\perp}$,

$$(A^*A - AA^*)(f_1 + f_2) = P|\alpha|^2 f_1 - \alpha P \overline{\alpha} f_1.$$

Hence

$$\begin{split} \langle (A^*A - AA^*)(f_1 + f_2), f_1 + f_2 \rangle &= \langle P|\alpha|^2 f_1, f_1 + f_2 \rangle - \langle \alpha P_{\alpha}^{-} f_1, f_1 + f_2 \rangle \\ &= \langle P|\alpha|^2 f_1, f_1 \rangle - \langle \alpha P_{\alpha}^{-} f_1, f_1 \rangle \\ &= \|\bar{\alpha} f_1\|^2 - \|P_{\alpha}^{-} f_1\|^2 = \|Q_{\alpha}^{-} f_1\|^2 \ge 0. \end{split}$$

Therefore $S_{\alpha,\beta}$ is hyponormal.

Corollary 1.1. Let φ be in L^{∞} . Then $S_{\varphi,0} = M_{\varphi}P$ is hyponormal if and only if $S_{\varphi,1} = \varphi P + Q$ is hyponormal if and only if T_{φ} is analytic.

Suppose α is a constant multiple of a unimodular function in L^{∞} and β is a complex number. Then we study the conditions of symbols α and β of subnormal and quasinormal $S_{\alpha,\beta}$.

Lemma 1.3. ([13]) For a bounded analytic function φ , the Toeplitz operator T_{φ} is quasinormal if and only if φ is a constant multiple of an inner function.

Theorem 1.2. Let α be a constant multiple of a unimodular function in L^{∞} and let β be a complex number. Then $S_{\alpha,\beta}$ is subnormal if and only if $S_{\alpha,\beta}$ is hyponormal if and only if $S_{\alpha,\beta}$ is quasinormal if and only if T_{α} is analytic and quasinormal if and only if T_{α} is a constant multiple of an inner function.

Proof. Let $A = S_{\alpha,\beta}$. Suppose A is subnormal. Since every subnormal operator is hyponormal, it follows that A is hyponormal. By Lemma 1.1(2), this implies that α is in H^{∞} . Since $|\alpha|$ is a constant, it follows that α is a constant multiple of an inner function. By Lemma 1.3, T_{α} is quasinormal. Conversely suppose T_{α} is analytic and quasinormal. By Lemma 1.3, this implies that α is a constant multiple of an inner function. By the proof of Lemma 1.2, for all $f_1 \in H^2$ and $f_2 \in H^2$,

Algebraic Properties of Singular Integral Operators on L² with Cauchy Kernel (Takanori YAMAMOTO)

$$A^*A(f_1+f_2) = P|\alpha|^2 f_1 + \overline{\beta} Q \alpha f_1 + \beta P \overline{\alpha} f_2 + |\beta|^2 f_2$$

= $|\alpha|^2 f_1 + |\beta|^2 f_2$

Since α is a constant multiple of an inner function, it follows that

$$(A(A^*A) - (A^*A)A)(f_1 + f_2) = A(A^*A)(f_1 + f_2) - (A^*A)(\alpha f_1 + \beta f_2)$$

$$= A(|\alpha|^2 f_1 + |\beta|^2 f_2) - (|\alpha|^2 \alpha f_1 + |\beta|^2 \beta f_2)$$

$$= |\alpha|^2 \alpha f_1 + |\beta|^2 \beta f_2 - (|\alpha|^2 \alpha f_1 + |\beta|^2 \beta f_2) = 0.$$

Hence A is quasinormal. We recall that every quasinormal operator is subnormal. Hence A is subnormal. By Theorem 1.1, this completes the proof.

Suppose φ is a constant multiple of a unimodular function in L^{∞} . Then we study the conditions of symbols φ of 2-contractive (i.e. convex, c.f. [1], [3]) operators $S_{\varphi,0} = M_{\varphi}P$.

Lemma 1.4. Let α and β be in L^{∞} . Suppose $S_{\alpha,\beta}$ is 2-contractive (i.e. convex).

- (1) If $|\alpha| \ge 1$ a.e., then for all f_1 in H^2 , $\|(\alpha T_\alpha + \beta H_\alpha)f_1\| \ge \|f_1\|$.
- (2) If $|\beta| \ge 1$ a.e., then for all f_2 in $H^{2\perp}$, $\|(\alpha \tilde{H}_{\beta} + \beta \tilde{T}_{\beta})f_2\| \ge \|f_2\|$.
- (3) If α is a bounded analytic function, then for all f_1 in H^2 , $||f_1||^2 2||\alpha f_1||^2 + ||\alpha^2 f_1||^2 \ge 0$.
- (4) If $\overline{\beta}$ is a bounded analytic function, then for all f_2 in $H^{2\perp}$, $||f_2||^2 2||\beta f_2||^2 + ||\beta^2 f_2||^2 \ge 0$.

Proof. (1): Let $A = S_{\alpha,\beta}$. Then A is 2-contractive (i.e. convex). For all f_1 in H^2 and f_2 in H^{21} ,

$$||f_1+f_2||^2-2||A(f_1+f_2)||^2+||A^2(f_1+f_2)||^2 \ge 0.$$

Hence

$$||f_1||^2 - 2||Af_1||^2 + ||A^2f_1||^2 \ge 0.$$

Since $A(f_1+f_2)=\alpha f_1+\beta f_2$ and

$$A^{2}(f_{1}+f_{2})=A(\alpha f_{1}+\beta f_{2})=\alpha P\alpha f_{1}+\alpha P\beta f_{2}+\beta Q\alpha f_{1}+\beta Q\beta f_{2}$$

it follows that

$$0 \le ||f_1||^2 - 2||Af_1||^2 + ||A^2f_1||^2$$

$$= ||f_1||^2 - 2||\alpha f_1||^2 + ||\alpha P \alpha f_1 + \beta Q \alpha f_1||^2$$

$$\le ||\alpha P \alpha f_1 + \beta Q \alpha f_1||^2 - ||f_1||^2$$

$$= ||(\alpha T_\alpha + \beta H_\alpha) f_1||^2 - ||f_1||^2.$$

(2): Since A is 2-contractive (i.e. convex), it follows that for all f_2 in $H^{2\perp}$,

$$||f_2||^2 - 2||Af_2||^2 + ||A^2f_2||^2 \ge 0.$$

Hence

$$0 \le \|f_2\|^2 - 2\|Af_2\|^2 + \|A^2f_2\|^2$$

$$= \|f_2\|^2 - 2\|\beta f_2\|^2 + \|\alpha P\beta f_2 + \beta Q\beta f_2\|^2$$

$$\le \|\alpha P\beta f_2 + \beta Q\beta f_2\|^2 - \|f_2\|^2$$

$$= \|(\alpha \tilde{H}_\beta + \beta \tilde{T}_\beta) f_2\|^2 - \|f_2\|^2.$$

(3): Since A is 2-contractive (i.e. convex), it follows that for all f_1 in H^2 ,

$$0 \le ||f_1||^2 - 2||Af_1||^2 + ||A^2f_1||^2$$

= $||f_1||^2 - 2||\alpha f_1||^2 + ||\alpha^2 f_1||$.

(4): Since A is 2-contractive (i.e. convex), it follows that for all f_2 in $H^{2\perp}$,

$$0 \le ||f_2||^2 - 2||Af_2||^2 + ||A|^2 f_2||^2$$

= $||f_2||^2 - 2||\beta f_2||^2 + ||\beta^2 f_2||^2$.

Theorem 1.3. Let φ be a constant multiple of a unimodular function in L^{∞} . Suppose an operator $S_{\varphi,0}=M_{\varphi}P$ is 2-contractive (i.e. convex, c.f. [1], [3]). Then $|\varphi| \ge 1$ a.e. and $|\varphi| \cdot ||T_{\varphi}f_1|| \ge ||f_1||$ for all f_1 in H^2 .

Proof. Let
$$A = S_{\varphi,0}$$
. Since A is 2-contractive (i.e. convex), it follows from Lemma 1.4(1), for all f_1 in H^2 , $\frac{1}{|\varphi|} ||f_1|| \le ||T_{\varphi}f_1|| \le ||\varphi|| \cdot ||f_1||$. Hence $|\varphi| \ge 1$ a.e.

Definition 1.1. For 0 , A belongs to class <math>B(p) if $(A^*A)^p = A^{*p} A^p$.

By the elementary calculation in the proof of the following corollary, it follows that if A is contractive and belongs to class B(2), then A is 2-contractive.

Corollary 1.2. Let φ be a unimodular function in L^{∞} . Suppose $S_{\varphi,0} = M_{\varphi}P$ is quasinormal. Then $S_{\varphi,0}$ is 2-contractive (i.e. convex), $S_{\varphi,0}$ is contractive and belongs to class B(2).

Proof. Suppose $A = S_{\varphi,0}$ is quasinormal. By Theorem 1.2, φ is an inner function. For all f in L^2 , $||Af|| = ||\varphi Pf|| = ||Pf|| \le ||f||$. Therefore A is contractive. Since A (A^*A) = (A^*A)A, it follows that $(A^*A)^2 = A^{*2}A^2$, and hence A is contractive and belongs to class B(2). Suppose A is contractive and belongs to class B(2). Then $I - A^*A$ is a positive operator. Hence, for all f in L^2 ,

$$\begin{split} \langle (I - 2A^*A + A^{*2}A^2)f, f \rangle &= \langle (I - 2A^*A + (A^*A)^2)f, f \rangle \\ &= \langle (I - A^*A)^2f, f \rangle \\ &= \langle (I - A^*A)f, (I - A^*A)f \rangle \\ &= \| (I - A^*A)f \|^2 \ge 0. \end{split}$$

Therefore A is 2-contractive (i.e. convex).

REFERENCES

- [1] M. Chō, T. Nakazi and T. Yamazaki, Hyponormal operators and two-isometry, Far East J. of Mathematical Sciences 49 (2011), 111–119.
- [2] C. C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809-812.
- [3] G. Exner, I. Jung and S. Park, On *n*-contractive and *n*-hypercontractive operators, II, Integr. equ. oper. theory **60** (2008), 451–467.
- [4] M. Fujii and Y. Nakatsu, On subclasses of hyponormal operators, Proc. Japan Acad., Ser. A. **51** (1975), 243–246.
- [5] T. Furuta, Invitation to Linear Operators from Matrices to Bounded Linear Operators on a Hilbert Space, Taylor & Francis, London, 2001.
- [6] I. Gohberg and N. Krupnik, One-dimensional linear singular integral equations, Vol. 1, Birkhäuser, Basel, 1992.
- [7] C. Gu, Algebraic properties of Cauchy singular integral operators on the unit circle, Taiwanese J. Math. 20 (2016), 161–189.
- [8] C. Gu, I. S. Hwang, D. Kang and W. Y. Lee, Normal singular Cauchy integral operators with operator-valued symbols, J. Math. Anal. Appl. 447 (2017), 289–308.
- [9] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933.
- [10] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer-Verlag, 1982.
- [11] I. S. Hwang and W. Y. Lee, Subnormal Toeplitz operators and the kernels of their self-commutators, J. Math. Anal. Appl. 361 (2010), 270–275.
- [12] I. S. Hwang and W. Y. Lee, Hyponormal Toeplitz operators with rational symbols, J. Oper. Theory 56 (2006) 47–58
- [13] T. Ito and T. K. Wong, Subnormality and quasinormality of Toeplitz operators, Proc. A. MS. **34** (1972), 157–164.
- [14] Z. Jabłoński and J. Stochel, Unbounded 2-hyperexpansive operators, Proc. Edinburgh Math. Soc. 44 (2001), 613–629.

- [15] Y. Kim, E. Ko, J. Lee and T. Nakazi, Hyponormality of singular Cauchy integral operators with matrix-valued symbols, preprint.
- [16] E. Ko, I. E. Lee and T. Nakazi, On the dilation of truncated Toeplitz operators II, preprint.
- [17] E. Ko, I. E. Lee and T. Nakazi, Hyponormality of the dilation of truncated Toepltz operators, in preparaton.
- [18] B. A. Lotto, Range inclusion of Toeplitz and Hankel operators, J. Operator Theory 24 (1990), 17-22.
- [19] R. Martinez-Avendaño and P. Rosenthal, An Introduction to Operators on the Hardy-Hibert Space, Springer, 2007.
- [20] S. G. Mikhlin and S. Prössdorf, Singular Integral Operators, Springer-Verlag, 1986.
- [21] S. Miyajima and I. Saito, ∞-hyponormal operators and their spectral properties, Acta Sci. Math. (Szeged) 67 (2001), 357–371.
- [22] T. Nakazi, Range inclusion of two same type concrete operators, preprint.
- [23] T. Nakazi, Norm inequality of AP + BQ for selfadjoint projections P and Q with PQ = 0, J. Math. Ineq. 7 (2013), 513–516.
- [24] T. Nakazi, Hyponormal singular integral operators with Cauchy kernel on L^2 , preprint.
- [25] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), 753–767.
- [26] T. Nakazi and T. Yamamoto, Norms of some singular integral operators, J. Operator. Th. 40 (1998), 187–207.
- [27] T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy kernel on L^2 , Integr. Egu. Oper. Th. 78 (2014), 233–248.
- [28] N. K. Nikolski, Operators, functions, and systems: An Easy Reading. Vol. 1, Amer. Math. Soc., Providence, 2002.
- [29] N. K. Nikolskii, Treatise on the Shift Operator, Springer-Verlag, Berlin, 1986.
- [30] S. C. Power, Hankel Operators on Hilbert space, Pitman, Boston, Mass., 1982.
- [31] S. Richter, Invariant subspaces of the Dirichlet shift, J. reine angew. Math. 386 (1988), 205-220.
- [32] S. Richter, A representation theorem for cyclic analytic two isometries, Trans. Amer. Math. Soc. 328 (1991), 325–349.
- [33] D. Sarason, Algelraic properties of truncated Toeplitz operators, Oper. Mathrices, 1 (2007), 419–526.
- [34] D. Sarason, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc. 127 (1967), 179–203.
- [35] S. M. Shimorin, Wold-type decompositions and wanderling subspaces of operators close to isometries, J. reine angew. Math. 531 (2001), 147–189.
- [36] Y. Sone and T. Yoshino, Remark on the range inclusions of Toeplitz and Hankel operators, Proc. Japan Acad., Ser. A. 71 (1995), 168–170.
- [37] T. Yamamoto, Majorization of singular integral operators with Cauchy kernel on L^2 , Ann. Funct. Anal. 5 (2014), 101–108.
- [38] N. Young, An Introduction to Hilbert Space, Cambridge Univ. Press, 1988.