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Abstract. Let @ and /A be functions in L (T), where T is the unit circle. Let P denote the orthogonal
projection from L2 (T) onto the Hardy space H?(T), and @ =1 — P, where I is the identity operator
on L*(T). This paper is concerned with the singular integral operators Sa,s on L2 (T) of the form
Sesf =aPf+ QS for fEL?(T). In this paper, we study the hyponormality of Sas which is related
to the Toeplitz operator on H 2 (T).

1. Introduction

For 1<p<co, L»=L7(T) denotes the usual Lebesgue space on the unit circle T={z&C :|z|=1} and
H'=H"(T) denotes the usual Hardy space on T. If p=2, then (f,g)= if:r fle®gle™dx and
I71=171l,. Let z=e®, let Hi=zH" and let H* =L?*© H* Then H**=Hj. Let P denote the
orthogonal projection of L? onto H? Let I denote the identity operator on L?, and let Q=17—P.
Then @ is an orthogonal projection of L2 onto H%*. In L? the sequence e,, defined as ex(e™)=e™,
n€7Z, is an orthonormal sequence. Here the n-th Fourier coefficient of f is defined by
(f ,en>=% f _7; Fle®e ™ dr=f(n)=f,. Let Py denote the rank one orthogonal projection of L?

onto C such that (Pof)(2)=FfO)fELY. Let Io=I—P, For a€L" let My denote the
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multiplication operator on L? such that M.f =af, (f €L?), let T« denote the Toeplitz operator on
H? such that

Tof =Plaf), (fEH?),
let 7. denote the operator on H?* such that

Tof =Qlaf), (fEH™),
let H, denote the Hankel operator of 4% to H*" such that

Hof =Qlaf), (fEH?)
and let H, denote the operator on H** to H? such that

Hof =Plaf), (fEH™).
Then Hy=Hj. For @, BEL", let Sas denote the singular integral operator on L? such that

Sasf=aPf+BRQf, (fEL?).

Then

(Saﬁf)(z):w.f(z)‘k CY(Z);B(Z) % Tz]jiz';df,

where the integral is understood in the sense of Cauchy's principal value (cf. [6], p.12). If FEL",
then (Sas/)(2) exists for almost all zET. The normality of Sa,s was established by Nakazi and the
author [27]. An operator A is called hyponormal if its self-commutator [A*, A]J=A"A—AA™ is
positive. When @ — A is a constant, then Se,s is hyponormal if and only if Se,s is normal ([13]). In this

paper, we study the hyponormal operator Sa,s.
2. HYPONORMAL SI-OPERATOR

In this section, when A is a complex number, the conditions of symbols @ and A of hyponormal

operators Sq,s are determined using Toeplitz operators and Hankel operators.

Lemma 1.1. Let @ and B be in L=. Suppose Sas is a hyponormal operator.

() If @ is in H*, then B is in H", and for all fr€H™, ”Hafz”SHHEsz.

() If B is in HT, then a is in H”, and for all /L€ H?, |Hsf 1| <|Hzfi).

Proof. For all fin L% Saaf = Plaf)+ Q(Bf). Since Sas is hyponormal, it follows that for all £, H?
and f,EH™,




Algebraic Properties of Singular Integral Operators on L* with Cauchy Kernel (Takanori YAMAMOTO)

0=<((Sa6Sa.s— SasSa.8) f1F f2), f1+ f2)
:||Sa,ﬁ(f1+f2)||2_| Sé.s(f1+fz)||2
=lafi+ Bl —|Palfit £ — QB+ £

2
Therefore, for all /AEH?
o<fur ~Parl ~|BA
=l@ar| -
and for all € H*,
e o o
<[] —|Par| -8
=|eBA| ~[Par.

Suppose @ is in H . Since for all /1€ H?, |@B.f1|<||Qa i this implies that ©Q8£1=0, and hence 3 is
in H*. Hence (1) holds.

Suppose Bis in H . Since for all f,€ H?**, ”PL;fz” < ||PEsz, this implies that Pa f,=0, and hence « is
in . Hence (2) holds. O

Lemma 1.2. Let a be in L=, and let B be a complex number. Then for all /HLHEH?® and f.€ H?*,
(SasSas— SasSas)(f1+ f2)=Plol’ fi—aPa f1+(8—a) Pafo+ BQaf..
Proof. Let A = Sa,s. Then

A*A(fl+f2):A*(Ulf1+6f2):A*(a/f1)+A*(BfZ)
:P§a'f1+QEaf1+P§,8fz+QEBf2
= Plal’ i+ BQafi+BPaf+| f2

and
AA(fi+ f)=APa(fi+ f)+AQB(f1+ /)
=aPc;(f1+fz)+ BQE(fl‘Ffz)
:aP§f1+aP§f2+|,8|2fz.
Hence

(A"A—AA)fi+ f)=Plal* fi—aPa fi+(8—a)Pafo+ BQaf..
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Theorem 1.1. Let @ be in L™ and let B be a complex number. Then Sa,pis hyponormal if and only if
Ta is analytic.

Proof. Suppose Sa,s is hyponormal. Since 5 is a complex number, it follows from Lemma 1.1 (2), that
a i1s in H®, and hence Ta is analytic. Conversely suppose 7w is analytic. Then « is in H”. Let
A=S,s By Lemma 1.2, for all /1 € H? and fo€H*,

(A"A—AA")fi+ f)=Plal* fi—aPa f.

Hence
(A"A—AA NS+ 1), fut f=(Plal £y, fi+ fo)—|aPafy, 1+ f)
=(Plal*f1, £1)—ePafy, f1)
=lari| —[Pas] =]|@ar] =o.
Therefore Sq,sis hyponormal. L]

Corollary 1.1. Let ¢ be in L=. Then So,0 = MP is hyponormal if and only if Se1 = ¢P + @ is
hyponormal if and only if Ty is analytic.

Suppose @ is a constant multiple of a unimodular function in L* and A3 is a complex number. Then

we study the conditions of symbols @ and S of subnormal and quasinormal Sa.s.

Lemma 1.3. ([13]) For a bounded analytic function ¢, the Toeplitz operator Ty is quasinormal if

and only if ¢ is a constant multiple of an inner function.

Theorem 1.2. Let a be a constant multiple of a unimodular function in L™ and let B be a complex
number. Then Sa,p is subnormal if and only if Sa.s ts hyponormal if and only if Sa.s is quasinormal if

and only if Ta 1is analytic and quasinormal if and only if @ is a constant multiple of an inner function.

Proof. Let A = Sa,5. Suppose A is subnormal. Since every subnormal operator is hyponormal, it
follows that A is hyponormal. By Lemma 1.1(2), this implies that @ is in H “. Since |a|is a constant, it
follows that @ is a constant multiple of an inner function. By Lemma 1.3, T« IS quasinormal.
Conversely suppose T4 is analytic and quasinormal. By Lemma 1.3, this implies that ¢ is a constant

multiple of an inner function. By the proof of Lemma 1.2, for all /A€ H? and f.EH?



Algebraic Properties of Singular Integral Operators on L* with Cauchy Kernel (Takanori YAMAMOTO)

A"A(fr+ fo)=Plal*fi+ BQaf+ BPa fr+|B1 s
=lo|* f1+|8 f.

Since « is a constant multiple of an inner function, it follows that

(A(AA)— (A A)A)fi+ f)=A(ATA)f1+ f) — (A A)af 1+ Bf)
= Allal* £, +181 f2) — (e’ afi +|818F>)
=lalafi+I8Bfr—(lel’afi+|8IBf:)=0.

Hence A is quasinormal. We recall that every quasinormal operator is subnormal. Hence A is

subnormal. By Theorem 1.1, this completes the proof. ]

Suppose ¢ is a constant multiple of a unimodular function in L*. Then we study the conditions of

symbols ¢ of 2-contractive (Le. convex, c.f. [1], [3]) operators Seo=M,P.

Lemma 1.4. Let @ and B be in L. Suppose Sas is 2-contractive (i.e. convex).

() If lal=1 ae., then for all fiin H? |(@Tat BHa) Al =] Al

@) I 18121 ae, then for all foin H*, |(eHs+ BT3).f| =] 7).

) If @ is a bounded analytic function, then for all f1in H? | A" —2lefil’ +|a?Al*=0.
(4) If B is a bounded analytic function, then for all f» in H*" ||fl*— 21872l +18%f =0.

Proof. (1): Let A = Sas. Then A is 2-contractive (i.e. convex). For all f1in H? and f» in H*,
|+ sl =2l AGr+ £ +A% A+ £ 0.
Hence
lAF=2lAnF+]A%7"=0.
Since A(f1+ f2)=af1+Af» and

Az(f1+fz)=A(a/fl+/3fz)=a'Pa'f1+a/P,6’fz+BQaff1+,8Q3f2,

it follows that
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o<lAlP—2lAanl*+lAzAl?
=l Al*—2llafil +laPafi+ ARaf I’
<llePas,+ BQaf I~ Al
=|(@Tut BH A= A,

(2): Since A is 2-contractive (i.e. convex), it follows that for all f» in H%**,
| =2l AL+ A =o0.
Hence

o<l Al —2lArd*+lA2f)
=|\f2l* —2Brl +llaPBr+ BRBLI
<llePBf>+BQBLI"—1 £
= ”(CYHB+ BTB)szZ_HfZHZ.

(3): Since A is 2-contractive (i.e. convex), it follows that for all £ in H?

o<l Al =2l AAI+ 1A% AN
=l AlF—2lafill*+la?£il.

(4): Since A is 2-contractive (i.e. convex), it follows that for all f in A%,

o<l el =2l ALl +1A%AN
=[P =287 +18 7. O

Theorem 1.3. Let ¢ be a constant multiple of a unimodular function in L. Suppose an operator
Seo=DMP is 2-contractive (i.e. convex, c.f. [1], [3]). Then |p|=1a.e. and |o|| Tofill =\ 1l for all f1
in H”

Proof. Let A=3S,,. Since A is 2-contractive (i.e. convex), it follows from Lemma 1.4(1), for all /1 in

1
H?, m”ﬂ” < Tofill <lel | A1l. Hence l¢| =1 ae. 0

Definition 1.1. For 0< p<oo, A belongs to class B(p) if (A*A) = A*? A?.

By the elementary calculation in the proof of the following corollary, it follows that if A is

contractive and belongs to class B(2), then A is 2-contractive.
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Corollary 1.2. Let ¢ be a unimodular function in L=. Suppose Se,o=M P is quasinormal. Then Se,o

is 2-contractive (i.e. convex), Se,0 1S contractive and belongs to class B(2).

Proof. Suppose A = Sy, is quasinormal. By Theorem 1.2, ¢ is an inner function. For all fin L?
lAfII=lePFlI=IPfI<|f]l. Therefore A is contractive. Since A (A*A) = (A*A)A, it follows that
(A*A)* = A*2A? and hence A is contractive and belongs to class B(2). Suppose A is contractive

and belongs to class B(2). Then ] — A™* A is a positive operator. Hence, for all fin L2,

(I—2A"A+A2AYf, f)=(I—24"A+(A"A))f, f)

=((r— A*A) >
=(I-A"A)f ([ ATA)f)
=[7—=A )7 =o0.
Therefore A is 2-contractive (i.e. convex). L]
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