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Extending a Japanese Speech—to—Gesture Dataset
Towards Building a Pedagogical Agent
for Second Language Learning

Dai Hasecawa* and Hiroshi EcHiZENYA *

Abstract

We created a Japanese speech—to—gesture dataset where we recorded 298 mins (trimmed into
210 mins) of speech audio data and the motion capture data of the accompanying gestures. Our
aim was to tackle speech—to—gesture generation by using a data—driven approach on the dataset.
Our first attempt of the speech—to—gesture generation partially succeeded. However, to improve
data—driven gesture generation, we will need more informative the dataset. In this paper, to en-
rich the dataset, we annotated seven gesture phases (rest, preparation, pre—stroke hold, stroke,
post—stroke hold, retraction) to 240 sentences out of 1047 sentences of our dataset. However, the
annotation process needs efforts. Thus, to extend the annotations to all over the dataset, we
tested a gesture phase estimation by using Bi—directional Long—Short Term Memory (Bi—direc-
tional LSTM). The results show that overall accuracy of seven gesture phase estimation was 0.61
in precision, 0.61 in recall, and 0.61 in f—value. The most successful phase in the estimation was

rest phase scored 0.91 in precision, 0.94 in recall and 0.92 in f-—value.

1 Introduction

New education paradigm, as typified by the flipped classroom model, has changed the focus of
education from offering students knowledge to developing students experience. In such education
process, students often required to learn basic knowledge and skills by themselves outsides of class-
room activity. Therefore, the development of effective learning support tools for self—learning be-
comes an important issue in modern education.

Among the various learning fields, the second language learning is one of the most challenging
subjects for developing self-learning support system. It requires listening and speaking practice, but it
has been performed in face—to—face communication. In recent years, virtual characters with a similar

body structure with humans, often referred to as virtual humans, have gained much interest by educa-
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tion field. In the filed of education, the virtual humans are also called as pedagogical agents. We be-
lieve that, in the second language learning, the use of pedagogical agents is promising as well as
many do in other subjects.

Such pedagogical agents have to perform natural human-like non—verbal behaviors. And speech
accompanying gestures also play an important role in educational interactions between the pedagogi-
cal agents with learners. However, implementing gestures with virtual human considered costly. Thus,
many researches concerning the automatic gesture generation have been carried out. Data—driven ges-
ture generation is one of the methods to generate speech accompanying gestures, aiming more simple
way to implement gestures.

In human—human communication, gestures (defined as gesticulation[13]) play an important role,
such as complementing or emphasizing speech. And researchers have been introducing non-—verbal
expressions, including gesture, into computer systems with human-like appearances, called Embodied
Conversational Agents (ECAs)[3]. It has also repeatedly been verified that gestures performed by
ECAs or robots have positive effects in various applications[1].

However, implementing meaningful gestures along with speech into ECAs costs time and effort. To
date, several studies have been conducted to automatically generate gestures from speech or text.
Early works tackled this problem using a rule—based approach[5, 4]. The rulebased approach has the
advantage in that if we can prepare enough knowledge to represent a task and domain, the system
will perform well. However, preparation takes a lot of effort. Thus, the domain is highly restricted.

To avoid this difficulty of the rule—based approach, a data—driven approach with machine learning
has also been proposed[6, 7]. In the data—driven approach, we do not have to prepare elaborate do-
main knowledge. Rather, the “knowledge” is automatically acquired in the learning process, and this
makes the data—driven approach be applicable to wider domains than the rule—based approach. How-
ever, generating gesture motions which are perfectly consistent with speech content still remains as a
challenging problem. In [7], the authors solved the gesture generation problem as a classification task,
thus the method still requires predefined gesture categories and handmade motion data. On the other
hand, the work of [7] succeeded to generate the motions of beat gestures. However, this approach
only used pitch and sound pressure of speech as inputs, so it is difficult to distinguish phonemes.
Naturally, this leads to difficulty in speech recognition. Since the semantic content of speech is highly
correlated to gestures, the difficulty in speech recognition causes a negative influence on the gener-
ated gestures.

In this paper, we will briefly introduce our data—driven approach along with our dataset. The very

initial attempt of our gesture generation partially succeeded. However, we believe that enriching the
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Figure 1: Recording and data format overview

dataset with annotations by hand makes our results better. However, the annotation, naturally, needs
experts knowledge, time, and efforts. Thus, in the main part of this paper, we will discuss our auto-

matic dataset annotation method by utilizing a small portion of annotated data.

2 Summary of Dataset

In our recordings, we aimed to mainly acquire metaphoric gestures and iconic gestures, as catego-
rized by McNiel[13]. Metaphoric gestures are gestures in which an abstract meaning is visually ex-
pressed as if it had a physical form, such as showing an empty palm as to indicate one is‘presenting
an idea’. Iconic gestures are used to illustrate physical, concrete items or acts, like expressing how
large an object is or rapidly moving one’s hand up and down to indicate the action of chopping
something. These gestures aid listeners in comprehending the structure and events or objects depicted
in the speech, and have many potentials uses in explanation, learning, and teaching. Deictic gestures,
used to indicate real/imaginary objects, people, directions, etc. around the speaker, were considered
inappropriate for usage in deep learning aiming to learn the association between speech and gesture,
heavily depending on the speaker’s surrounding environment rather than the actual context of the
speech. Also, beat gestures, used for emphasis and expressing the rhythm of conversations, have little

relation to the actual context of speech and were not considered to be viable to be used in the learn-

ing.

2.1 Recording Devices
Motion data was acquired using the software Motive : Tracker by SPICE Inc., along with a motion

capture suit with 49 markers and 8 OptiTrack Prime 17 cameras, placed in an 850 X 850m area (Fig-
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ure 1). The recorded motion data was exported to bvh format, in which motion data is described as
the hierarchy and initial pose of the skeleton and time sequence data of each joint’s rotation angle.
Speech data was acquired using a headset, as to not hinder the subject’s movement. The recorded
speech data was stored in mp3 format. Video data was acquired using a stationary video camera and

stored in mp4 format.

2.2 Participants and Procedure

The participants were 2 male undergraduate students, both at the age of 25. The data was recorded
in form of an interview, where the participant explains a topic prepared and thought about before-
hand. Several other methods were attempted, but these methods were considered unsuited for the re-
cording. First, when having the participant read a transcript out loud, valid gestures did not appear.
This is thought to be because the speaker has to have a concrete enough image about the context of
what they were talking about for gestures to naturally appear during speaking. Second, when having
the participant make a presentation using a slide show, deictic gestures appeared with too much fre-
quency, since the speaker tended to point at his presentation slide while explaining. Third, when hav-
ing the read a transcript of easy context such as fairy tales, and instructing the participant to concen-
trate on using plausible gestures while speaking, the participant often used gestures too frequently,
and gestures that were too exaggerated. Putting too much emphasis on doing gestures led the gesture
usage to be unnatural, and having such gestures in the dataset would have a negative effect on the
learning. Recording took place in a comfortably large quiet room, where only the subject of the mo-
tion/speech data and the person operating the recording devices were allowed to enter so that the re-
corded speech contains as less static as possible. One participant was to wear the headset and motion
capture suit and make sure there are no problems with the positions and number of markers. Then,
the participant was to take a T—pose so the recorder can make sure that the motion tracking was cali-
brated correctly. After checking, the recorder starts recording. Before proceeding to speak, the partici-

pant claps his hands once so that portion could be used to sync the speech, motion, and video data.
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Figure 2 : Outline of gesture generation
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When finished, the participant goes into a T—pose once again.

2.3 Speech Associated Gesture Dataset

A total of 298 minutes (1047 sentences) of speech audio data with the motion data of the accompa-
nying gestures were recorded. Additionally, video data of the participants was also recorded so the
validity of the two data could be checked afterward. The data were trimmed one by one so 210 mins

of audio and motion data in total. We will explain our annotation (later) and analysis later.

3 Summary of Speech—to—Gesture Generation

We propose a method to automatically generate gesture motions from speech audio. In this method,
we will try to build a model to represent the relationship between speech content and gestures accom-
panying the speech by using a 5 layered Bi—Directional LSTM Network which can take into account
both backward and forward consistencies over a long period of time.

Figure 2 shows an outline of our proposed method. As shown, first, a speech audio of one sen-
tence (.wav) is converted to MFCC[8] feature vectors for each time window. MFCC is a widespread
audio feature designed for speech recognition, taking into account human perceptual tendency[9, 12].
Therefore, we believe that the MFCC feature can hold sufficient information for language.

Next, the MFCC feature vector is fed into a Bi—Directional LSTM Network which has five layers.
Then, 3D positions of entire body joints are predicted by regression of the network. LSTM can hold
previous inputs for a relatively long duration. Hence, it should be effective for specific data modeling
such as a gesture which is related to a whole sentence or sometime beyond a sentence. Figure 2
shows the LSTM internal architecture. The network is trained by a speech and motion paired dataset
we created.

The output of the network has small discontinuities between frames originating from noise in the
input data or prediction errors. It is very disturbing for humans to see someone gesturing with such
discontinuities. Therefore, we will address the problem in post processing by using two kinds of tem-
poral filtering. One kind is a 1€ filter[2], and the other is a Moving Average (MA) filter.

We evaluated the results of gesture generation in a quantitative way. We used Average Position Er-
ror (APE) as the evaluation measure. APE compares the predicted positions with positions that origi-
nally accompanied the speech and it calculates Euclidean distance. Figure 3 shows the APEs of 14
representative joints out of 64 joints in the human model. As shown, the errors were all under 10 cm,
and naturally wrist joints had the biggest error because the errors were accumulated from the root of

joint hierarchy to the tip.
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Figure 3 : Results of Gesture Generation

4 Annotation

Two annotators, who preliminary learned gesture anatomy in time and kind, annotated the dataset
by using an annotation tool Anvil (Figure 4). The target of annotation was a part of the dataset, 240
sentences out of 1047 sentences. 7 gesture phases and 4 gesture kinds were annotated.

Gesture phases are classifications in time of a gesture sequence from the start to the last. they are
classified as rest, preparation, pre—stroke hold, stroke, post—stroke hold, retraction. Rest phase is the
start position where arms were in relax state. Preparation is the preliminary movement for next phase,

stroke. Stroke is the main phase of gesture which shows the function of the gesture along with

Figure 4 : Annotation
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Figure 5: Results of Dataset Analysis on 240 out of 1047 sentences

speech. Pre—stroke hold and post—stroke hold is the typically small amount of stopping motion be-
tween preparation and stroke or stroke and retraction. Retraction is returning motion to the rest posi-
tion.

Gesture kinds are classifications in meaning or function of gesture. Beat gesture, iconic gesture,
metaphoric gesture, deictic gesture are the 4 types of gesture described in section 2.

In the annotation process, one annotator picked up a speech and perform annotation by using An-
vil. Then, the other annotator checked the same speech and the annotation data again. If the two an-
notators had different opinion on the annotations, they determined based on discussions. Figure 5

shows the results of annotations. In total, 2,696 phases and 839 strokes were annotated.

5 Gesture Phase Estimation
5.1 Overview of Proposed Method

To enrich the entire dataset, we conducted gesture phase estimation. As shown in the previous sec-
tion, we annotated 240 sentences out of 1047 sentences in dataset. By using this annotated data, we
will train a neural network model to predict a gesture phase sequence from a human pose sequence.

We used the same architecture as the one used in gesture generation except for the last layer. The
last layer has 7 dimensions representing 7 gesture phase and the activation function is replaced from
ReLU to soft—max function. The loss function is also replaced from mean square error to categorical
cross—entropy.

We will explain the proposed gesture phase estimation method in detail. First, a human pose se-

quence is divided into frame by frame. We used three dimensional coordinates of all 64 joints. Thus,
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we will get T length time—series human pose vectors X={xt},t=1, .., T. Next, &t is fed into the
network along with human pose vectors of S steps backward and forward. Thus, the actual input at
time ¢ will be the following : {xi-s, ..., X—1, X, Xes1, .., Xevs). In this paper, the time step { was
0.05 seconds (20 steps per second), the number of context steps S was 30 (1.5 seconds backward and
forward, which is a 3.0 second time window).

By feeding the human pose vectors {¥+-s, ..., &1, &+, X1, ..., Xrrs} into the Bi—Directional
LSTM Network, that outputs probability of 7 gesture phases Pr ={p/}, i=1, .., K, where K is 7

which is the number of gesture phase categories we will predict.

5.2 Network Architecture

Figure 6 shows the Bi—Directional LSTM Network architecture we used. The network consisted of
five layers. Layers ' —h® and h® were fully connected layers which are not recurrent and 2" was a
Bi-Directional LSTM layer. In Figure 6, numbers on the left side show the number of feature dimen-
sions for each layer. The network design was based on Deep Speech [10], which achieved one of the
most successful speech recognition attempts.

h', as described above, takes an human pose vector X of current step ? along with context human

pose vectors of S steps backward and forward. h* and h® take outputs from previous layers. There-
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Figure 6 : Network Architecture
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fore, h' —h® of step ¢ is calculated as
h% — g(vVlh#*1+,b[), (1)

where W' and b' are the weight and bias parameters of &' respectively, and g is an activation by
Rectified Linear Unit (ReLU) [14].

h* is a Bi-Directional LSTM layer which consists of forward LSTM units &’ calculating from
t=1 to t=T and backward LSTM units A ° calculating backwards from step t=7 to t=1 as

shown below (where M is the calculation of the LSTM unit).

h/ =g(M(W'h}+W/h/ +b*")), ()

h! =g (M (W*h}+W'h}, +b")). 3)
Lastly, the last layer & ° is calculated as below.
hi =W°({h/, h/})+b", )

In addition, to avoid overfitting and to make learning stable, Batch Normalization [11] and 10%
Dropout [15] are applied to A'—h*. Also, as mentioned above, for the last layer, we used soft—max

functions as an activate functions.

5.3 Training
24 sentences were excluded for evaluation, and we used 80% of the rest (172 sentences) for the
training, 20% (44 sentences) for the validation. We used categorical cross—entropy for the loss func-

tion. The loss function L was defined as

L(v,y)=-2 2y logv/, (5)

t=1i=1

where ¥ was the output of the Bi—Directional LSTM Network and U was the Ground Truth. We
trained the network for 500 epochs which was enough to converge the learning (as shown in Figure

7).

5.4 Results and Discussion
We used 24 sentences for evaluation which were not use in training process. The results of gesture
phase estimation for the test sentences are described in Table 1. As shown, the proposed method the

best predict rest phase (0.93 in f—value). The reason why the rest phase was the most predictable is
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Figure 7 : Training Loss and Validation Loss

Table 1: Results of Phase Estimation

rest | prep | pr—hold | stroke | pst-hold | retraction

PRECISION | 0.92|0.65| 0.29 | 0.68 0.40 0.71
RECALL | 0.94|0.68| 0.31 | 0.52 0.55 0.67
F-VALUE | 0.9310.67| 0.30 | 0.59 0.47 0.69

that the speakers’ hands and arms performs the same positions for the most of time. The variety of
positions are the least among the gesture phrases. At the same time, the speech signal is also salient.
The rest phase motions tend to performed along with the silence.

On the other hand, pre—stroke—hold (pr—hold) and post—stroke hold (pst—hold) were the most diffi-
cult to predict (below 0.5 in f—value). These two phase were the least seen in the dataset. Although
according to the annotation analysis, the proportion of pre—stroke was 5% and post—stroke was 15%,
these percentage was calculated as the number of phrases. When counted by time—frame the percent-
age will drop significantly, because the hold states only last a moment. This worked as an disadvan-

tage in out data—driven approach.

6 Conclusions

In our previous research, we have created a Japanese speech—to—gesture dataset where we recorded

298 mins of speech audio data and the motion capture data of the accompanying gestures (trimmed
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into 210 mins). We also had tackled speech—to—gesture generation by using a data—driven approach
on the dataset, and the attempt had partially succeeded. To improve data—driven gesture generation,
we proposed gesture phase estimation method to enrich the dataset. In this paper, We annotated seven
gesture phases (stroke hold, stroke, post—stroke hold, retraction) to 240 sentences out of 1047 sen-
tences of our previous dataset. Then, to extend the annotations to all over the dataset, we conducted a
gesture phase estimation by using Bi—directional Long—Short Term Memory (Bi—directional LSTM).
The network consists of five layers. The first three layers were fully connected layers, the fourth layer
was Bidirectional LSTM, and the last layer was also fully connected layer. The network was trained
to estimate one of seven gesture phases frame by frame, taking a time—series of motion data as an in-
put. The result showed that overall accuracy of seven gesture phase estimation was 0.61 in precision,
0.61 in recall, and 0.61 in f—value. The most successful phase in the estimation was rest phase scored

0.92 in precision, 0.94 in recall and 0.93 in f—value.
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