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Properties of computer-simulated fractal speckles
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Abstract

Fractal speckles are simulated in a computer by assuming that a uniformly distributed random phase
screen is illuminated by coherent light with an intensity profile of a power function. The results are discussed
in comparison with the previous theoretical and experimental papers by the author’s group. For the power
－D of the power function, a wider range of 0＜D≤3 is examined than that of 1＜D＜3 discussed in the theory.
From the simulated speckle intensities, probability density function (PDF), speckle contrast, and spatial
correlation function are derived. The fractality of speckles predicted theoretically in the range of 1＜D＜2 is
confirmed by the simulation on the basis of the result that the intensity correlation function obeys a power
function with the power of 2(D－2). It is revealed from the PDF and contrast that the speckle in this range is
fully developed and obeys the zero-mean circular complex Gaussian statistics. Even in this range, however,
the speckle shows a slight deviation from this statistics as D approaches to 2, and when D exceeds 2, the
speckles no longer obey this statistics. It is also revealed that the fractality of speckles is extended to the
missing region of 0＜D＜1 in the theoretical analysis, though adequate care is needed in the interpretation of
the fractal dimension in this region.

Key Words : fractal speckle, fractal dimension, computer simulation, power-law illumination, intensity
correlation

1. Introduction

Speckles can be regarded as randommarkers
distributed over the two- or three-dimensional
space, which make it possible to detect various
mechanical information of an object generating
the speckles, or lying or moving in the space.1, 2)

Therefore, the spatial extent of the marker,
namely the speckle size, is a critical factor
affecting the specifications, such as sensitivity,
detection range and dynamic range, of the
detecting method using speckles.

The speckle size is given by the intensity
correlation function of speckles, which is typically
determined by the Fourier transform of an
intensity profile of light incident on the scattering
object as far as the speckles are observed in the

Fraunhofer diffraction region of the scattering
object and obey the complex Gaussian statistics.
Therefore, elaborating the intensity profile inci-
dent on the diffuser is the fundamental principle of
controlling the intensity correlation of speckles.

To generate speckles with very long spatial
correlation, Uno et al.3) proposed theoretically a
method for generating fractal speckles, which
have intensity correlation obeying a power
function. This type of fractal speckles was then
confirmed experimentally.4) After that, various
properties of the fractal speckles have been
revealed theoretically and experimentally.5-12)

In addition, computer simulation studies have
also been carried out by the present author to
complement theoretical analysis, and the results
have been shown in a summarized form in several
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reports as conference proceedings.13-15) However,
detailed description of the simulation study has
not been given so far.

The purpose of this paper is to describe the
procedures of the computer simulation of fractal
speckles in detail with results of higher precision
than given ever, and to have discussions, in
particular, in comparison with the previous
theoretical and experimental results.

2. Theoretical background

In the theoretical analysis carried out by Uno
et al.,3) a doubly scattered speckle, or speckled
speckle, was assumed for the generation of fractal
speckles. With reference to Fig. 1, incident
coherent light is first scattered by a random
fractal object with fractal dimension D and
produces in its far field or in its Fourier transform
plane a speckle pattern, a kind of diffractal, as
coined by Berry16). This diffractal speckle has an
average intensity distribution expressed by

I(q)∝q－D, (1)

where q is a position vector of this observation
plane and q is its magnitude, i.e. the distance from
the optical axis. Equation (1) is a well-known
relation for the small-angle scattering from a mass
fractal object of dimension D.17-19)

This speckle field is subsequently scattered
by an ordinary diffuser such as a ground glass
plate placed in the plane, and a doubly scattered
field is generated in the far field of the ordinary

diffuser. Uno et al. showed that the correlation
function μ (r) of the intensity variations of this
speckle field is given by

μ(r)=〈I(r′)I(r′+r)〉－〈I(r′)〉〈I(r′+r)〉〈I(r′)〉〈I(r′+r)〉

∝􎝆
r2(D－2)

(log r)2

1

;
;
;

1＜D＜2
D=2
2＜D＜3

. (2)

It is known in the theory of fractals that a
non-negative physical quantity M is fractal with
fractal dimension D if M has an autocorrelation
function of the form of a power function

C(χ)=〈M(x)M(x+χ)〉∝χ－α (3)

with the power α equal to d－D where d is the
Euclidean dimension of the observation space.
Therefore, from eq. (2), this type of doubly
scattered speckles under the condition of 1＜D＜2
can be considered to be fractal, and the fractal
dimension Ds of the speckle is given by18, 19)

Ds=2D－2. (4)

This theoretical prediction was verified by an
experiment based on the double scattering by a
random fractal object and a ground glass plate as
an ordinary diffuser.4)

It is noted that most important factor for
producing fractal speckle is that the second
ordinary diffuser is illuminated by coherent light
having the intensity profile of eq. (1) as shown in
Fig. 2. Therefore, the role of the first scattering by
the random fractal object is to generate this
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Fig. 1 Optical system for generating fractal speckles by a double scattering process.



power-law profile for illuminating the diffuser.
This fact was clearly verified by Funamizu and
Uozumi,5) who produced fractal speckles by
generating coherent illumination profile in the
form of eq. (1) by means of a spatial light
modulator.

Statistical properties of fractal speckles have
been investigated by the author’ s group; three-
dimensional correlation property,10) generation
and properties in an image plane9) and a Fresnel
diffraction region,11) multifractality,7) derivatives
of intensity and phase,12) and so on.

It is also noted that the experiments made so
far were limited to the case of 1＜D＜2. This is
because there are some difficulties in carrying out
experiments for D≥2. Since ordinary fractal
apertures embedded in a plane have a fractal
dimension D less than the Euclidean dimension d=
2 inevitably. This limitation may be bypassed by
exploiting surface fractals.20, 21)That is, an aperture
with its marginal boundary being fractal line with
a surface fractal dimension Db produces, on
diffraction, the intensity distribution proportional
to q－(2d－Db), which amounts to q－D with 2＜D≤3 for
2＞Db≥1. However, power functions with such a
strong decay require extremely low noise condi-
tions for reliable experiments.

It is also noted that eq. (2) states nothing
about the case of D≤1. Scattering experiment in
this regime involves another difficulty. That is,
objects with small D have extremely small
transmittance and, therefore, yield extremely low
intensity distribution in the Fourier plane in Fig. 1.

Because of these difficulties in experiments
for the ranges of D outside of 1＜D＜2, computer
simulations were employed for investigating the
correlation properties of speckles produced in the
entire range of 0≤D≤3. The present paper
describes the same procedure of the computer
simulations performed in the past studies,13-15) but
in more detail and with higher precision.

3. Simulation procedure

With reference to Fig. 2, a square matrix of a
size N×N is generated from uniform and
uncorrelated random numbers in the range of
(－π, π) to model a random phase distribution ϕ(q)
of a diffuser placed in the object plane, where N=
213=8192 is used in the present simulation, while it
was N=210=1024 in the previous one.13-15)

A complex amplitude for illuminating the
diffuser is given by a matrix expressed by, instead
of the square root of eq. (1), the function of

A(q)=􎜢1+􎜂 qR 􎜒
2

􎜲
－D4
, (5)

which is a typical approximation to a power
function for avoiding the singularity at the
origin.21) In eq. (5), R stands for the parameter
controlling a deviation of this approximation from
the precise power function around the origin.
Figure 3 shows A (q) of eq. (5) in a logarithmic
graph for three different values of R and for D=1.
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Fig. 2 Optical system for generating fractal speckles
by a simple scattering process.

Fig. 3 Dependence of the incident complex ampli-
tude A(q) on the parameter R.
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Fig. 4 Speckle patterns for 0.2≤D≤1.0. Patterns of (a1)-(e1) are of 1024×1024 pixels, while those of (a2)-(e2)
are magnified central area of 128×128 pixels of them.



4. It is seen from this figure that R corresponds
nearly to the center of the crossover region from
the constant to the power-function behaviors as
expected from eq. (5). We adopted R=0.1 since it
gives almost perfect power function except at the
origin, where A(0)=1.

The complex amplitude distribution just
behind the diffuser is calculated from two
matrices of exp [iϕ (q)] and A (q), and hence, the
intensity distribution in the observation plane is
obtained by

I(r)=􎘋FFT2􎝀A(q)exp􎜠iϕ(q)􎜰􎝐􎘋2, (6)

where FFT2􎝀 􎝐 stands for the two-dimensional
fast Fourier transform operation.

From this intensity distribution, the probabil-
ity density function pI(I) and the speckle contrast
defined by

C= σ I
〈I〉 (7)

are directly derived, in which 〈I〉 and σI are the
average and standard deviation of the intensity.
The intensity correlation function is also calcu-
lated by the first equality in eq. (2). For Monte
Carlo simulations based on random numbers,
reduction of statistical fluctuations in the results is
quite important. In the present simulation, the
statistical noise in the intensity correlation
function is reduced in two ways. First, an
ensemble average of the two-dimensional correla-
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Fig. 4 (continued)
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Fig. 5 Speckle patterns for 1.2≤D≤2.0. Patterns of (a1)-(e1) are of 1024×1024 pixels, while those of (a2)-(e2)
are magnified central area of 128×128 pixels of them.



tion function is calculated from a large number of
speckle patterns produced by statistically inde-
pendent random number matrices, which corre-
spond physically to statistically independent
rough surfaces or phase screens. Second, by
virtue of the isotropy of the phenomenon, an
angular average of the ensemble averaged
correlation function is calculated by

C I(r)= 12π
2π

0
C I(r ,θ)dθ. (8)

This angular average is effective and employed
also in processing experimental data.4) Simula-
tions and the related calculations are all per-
formed with MATLAB.

4. Results and discussions

4.1 Intensity distributions

Some examples of speckle patterns gener-
ated by the simulation are shown in Figs. 4-6 for
every 0.2 value in the range of 0.2≤D≤3.0. In these
figures, images of (a1)-(e1) show speckles in an
area of 1024×1024 pixels, for which speckles are
displayed in such a way that I=0 and I≥〈I〉+4C
correspond to black and white, respectively, while
those of (a2)-(e2) are their magnified central
portions of 128×128 pixels, in which each pixel is
barely resolved. Let us use (a) to denote both of
(a1) and (a2), and the similar notations for (b)-(e),
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Fig. 5 (continued)
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Fig. 6 Speckle patterns for 2.2≤D≤3.0. Patterns of (a1)-(e1) are of 1024×1024 pixels, while those of (a2)-(e2)
are magnified central area of 128×128 pixels of them.



too.
Figures 4(a)-(e) show the case of 0.2≤D≤1.0,

which is not covered by eq. (2). From the figures
of (a1)-(e1), it is seen that speckle grains are very
small and seem to distribute almost independently
from each other. However, close observation of
the magnified portions in (a2)-(e2) reveals that
some speckle grains grow and some diminish
gradually and slightly with an increase in D even
in this regime. It seems difficult, however, to judge
from these patterns whether these intensity
distributions have fractal property.

Figures 5(a)-(e) correspond to the range of 1.
2≤D≤2.0, which is the regime where the fractality
is predicted by eq. (2), except the case of D=2.0,

and confirmed experimentally.4) The intensity
distributions in this region correspond well to the
experimental patterns (Fig. 4 in ref.4)), and hence
the simulation visually confirms again the absence
of definite speckle size, statistically self-similar
appearances, and monotonous development of
intensity clustering with an increase in D. In case
of D=2.0 shown in Fig. 5(e), however, fine details of
intensity variations in the speckle pattern begin to
weaken. This fact implies the deviation from
fractal behavior predicted in eq. (2).

When the exponent D increases further and
enter the regime of D＞2.0, the intensity distribu-
tions come to show different appearances from
those in the region of 1.0＜D＜2.0. As is seen from
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Fig. 6 (continued)



Fig. 6(a)-(e), the patterns seem to loose granular
appearance gradually and to gain rather smooth
structures instead. Such a trend can be explained
qualitatively as follows. Since the observation
plane is located in the Fourier transform plane of
the diffuser and since the diffuser behaves as a
white noise generator, the illuminating intensity
distribution can be regarded as a power spectrum
of the complex amplitude in the observation plane.
Therefore, the power-law illumination with very
large value of D corresponds to a strong

enhancement of the DC and lower spatial
frequency components and considerable suppres-
sion of higher frequency components in the
scattering patterns.

Intensity distributions along the horizontal
central lines of Figs. 4(a1)-(e1), 5(a1)-(e1) and 6(a1)-
(e1) are shown in Fig. 7 for the length of 256 pixels.
In this figure, the intensities are normalized by its
average 〈I〉. Important features in appearance of
speckles explained above, namely very slight and
gradual growth and diminution of intensity peaks
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Fig. 7 Intensity distributions along horizontal central lines of Figs. 4(a1)-(e1), 5(a1)-(e1) and 6(a1)-(e1).



from D=0.2 to D=1.0, subsequent clear growth of
speckle clustering up to D=1.8, and then turning
to gradual loss of fine structures and peaks
beyond D=2.0, can be verified in this figure.

4.2 Probability density function and Contrast

The PDF, pI (I), of the speckle intensity is
calculated as a normalized histogram and the
result is shown in Fig. 8. In the calculation of PDF
in Fig. 8, the data were averaged over statistically
independent 2000 diffusers. It is seen from this
figure that the speckle intensity practically obeys
the negative exponential density for 0.2≤D≤1.6,
shows a slight deviation from that for D=1.8, and
gradually approaches to Gaussian-like density
with a further increase in D. This implies that the
speckle is fully developed and obeys the zero-
mean circular complex Gaussian statistics for 0.
2≤D≤1.6.22, 23) Then the speckle begins to deviate
from it as D approaches to and exceeds 2.0. This
behavior of PDF agrees with the experimental
result shown in ref.4), in which it was shown that
the experimental PDF is of the negative exponen-
tial for D=1.2, 1.5 and 1.8.

Speckle contrast C is also calculated by eq. (7)
from the simulated speckle patterns generated
from 2000 diffusers, and the result is shown in Fig.

9. It is seen from this figure that the contrast is
practically unity for D≤1. 6, with a very slight
decrease for D=1.6. Then it begins to decrease
around D=1. 8, and rapid decrease is observed
with a further increase in D in the region of D≥2.0.
From this behavior of the contrast, together with
the PDF of the intensity shown in Fig. 8, we can
conclude that the speckle in the range of 0.2≤D≤1.
6 is fully developed. This is an interesting result
because it is difficult to estimate an effective
number of independent scattering elements
included in the illuminating spot in the case of the
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Fig. 8 Dependence of the PDF of intensity on D.

Fig. 9 Dependence of the speckle contrast on D.



power-law illumination, which has no definite spot
size as shown in Fig. 2 and hence we have no
evidence to justify the application of the central
limit theorem in the formation of the fractal
speckles.

4. 3 Intensity correlation and fractal dimen-
sion

Intensity correlation functions are calculated
from the intensity distributions shown in Figs. 4-6
together with other similar patterns and are
shown in Fig. 10 as a three-dimensional plot. The
number of statistically independent diffusers used
in calculating CI(r) in Fig. 10 was 200,000 for D=0.
2, 100,000 for 0.4≤D≤1.0, 20,000 for D=1.2 and 1.4,
and 2, 000 for 1.6≤D≤3.0. Due to these large
numbers of diffusers, the correlation function is
derived with much higher precision than given in
the previous reports.13-15) In Fig. 10, one horizontal
axis, r, and the vertical axis, CI(r), are plotted on a
logarithmic scale, while the other horizontal axis,

D, linearly. It follows that a linear behavior in
planes parallel to the CI (r)－r plane implies a
power function. It is clearly seen from this figure
that CI (r) is regarded as power functions in the
regime of 1＜D＜2 for the range of r≲102, and
that the slope of the line becomes steeper as D
decreases. This agrees with the theoretical
prediction of eq. (2) and experimental data (Fig. 8
in ref.4)). We can also confirm that the correlation
function is practically constant for D＞2, and that
D=2 is the critical point between the power-law
behavior and constant one, which is predicted also
in eq. (2). Of course, this nearly constant behavior
for D＞2 corresponds to the rather smooth
appearance of the patterns in Fig. 6 and gradually
flattening intensity distribution for D＞2 in Fig. 7.

On the other hand, it is interesting to note
that the power-law behavior in the regime of
1＜D＜2 seems to be extrapolated to that of D≤1.
Thus, the range of D that produces fractal
correlation property is extended toward the lower
D than predicted by eq. (2). This means that the
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Fig. 10 Dependence of the intensity correlation function on the exponent D.



degree of spatial correlation of the fractal
intensity distributions can be controlled in a wider
range than considered so far.

For quantitative examination of the appa-
rently linear behavior of CI(r) in Fig. 10, the local
slope of each curve is calculated and shown in Fig.
11. In this figure, the slope predicted by eq. (2) is
also shown on the left with short broken lines,
each with the same color as the corresponding
local slope curve, with the predicted values
extrapolated to D＜1.0. It is seen in this figure that
each local slope is nearly constant in the range of r
≲ 102, though still remaining statistical fluctua-
tions become stronger as D decreases. The local
slopes show fairly good accordance with the
theoretical slope for D≤1. 8 including also the
extrapolated regime of D≤1. 0, though slight
variations are also observed in each curve.

As discussed in sec. 2, the fractal dimension
Ds of the speckle patterns in the case of 1＜D＜2 is
given by eq. (4), which covers the range of 0＜Ds＜
2. However, extrapolation of this relation to D≤1
gives rise to negative values of －1≤Ds≤0. This is
not acceptable and is to be interpreted to be Ds=0
in this region. This peculiarity is explained as
follows. The discussion made so far is based on the
two-dimensional observation plane. However, the
speckling phenomenon under current discussion

is not restricted in the two-dimensional observa-
tion plane but is known to extend in the three-
dimensional space, and therefore the fractal
structure is also extended in the three-dimensional
space.10) If this three-dimensional fractality is
isotropic, the fractal dimension of the three-
dimensional distribution of speckle would be Ds+1.
Hence, the apparently negative dimension in the
two-dimensional plane is non-negative in the
three-dimensional space. It is noted, however, that
the fractality in the three-dimensional space is
known to be anisotropic.10, 11) Therefore, the discus-
sion concerning the fractal dimension of speckles
in the three-dimensional space would be more
complicated, and worth further discussions.24)

5. Conclusion

Generation of speckles was simulated in a
computer by assuming that a uniformly distrib-
uted random phase screen is illuminated by
coherent light with an intensity profile of a power
function. For the power －D of the power
function, a wider range of 0＜D≤3 was examined
than that of 1＜D＜3, covered in the previous
theoretical treatment.

The generated speckles show a very slight
and gradual growth and diminution of intensity
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Fig. 11 Local slope of CI(r) in the logarithmical plot.



peaks with an increase in D from D=0.2 to D=1.0,
and subsequently clear growth of speckle cluster-
ing is observed up to D=1.8, and then they turn to
gradual loss of fine structures and peaks beyond
D=2.0.

From the simulated speckle intensities,
probability density function (PDF), speckle con-
trast, and spatial correlation function were
derived. The fractality of speckles predicted
theoretically in the range of 1＜D＜2 was
confirmed by the simulation, on the basis of the
result that the intensity correlation function obeys
a power function with the power nearly equal to
the theoretical values of 2(D－2).

It is revealed from the PDF and contrast that
the speckle in this range is fully developed and
obeys the zero-mean circular complex Gaussian
statistics. Even in this range, however, the speckle
shows a slight deviation from this statistics as D
approaches to 2, and when D exceeds 2, the
speckles no longer obey this statistics.

It was also revealed that the fractality of
speckles is extended to the missing region of
0＜D＜1, in the theoretical analysis. This is an
interesting result though adequate care is needed
in the interpretation of the fractal dimension in
this region.
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