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研究論文

An efficient algorithm for mining frequent items
from a data stream

Naoya TORIYABE＊ and Takuya KIDA＊＊

Abstract

There are three major counter-based algorithms for mining frequent items from a data stream:
Frequent, Lossy counting, and Space saving. Among these, the Frequent algorithm is considered less
effective than the others with respect to its precision, because it does not guarantee a margin of error on the
estimated frequency of each output item. In this study, we propose a new algorithm (KRB), based on the k-
reduced bag concept used in the Frequent algorithm. Our algorithm stores information on the cumulative
number of k-reductions, as well as the frequency of each item, upon entry of the item in a counting dictionary.
This enables the margin of error to be guaranteed as theoretically better than that of the Space saving
algorithm. The amortized time complexity of updating the dictionary is  , and the space complexity for the
work space is  , both of which outperform the Lossy counting algorithm, where  is a given error threshold.
Our experimental results confirmed that KRB achieved the same level of speed and accuracy as the current
methods.

KeyWords : Frequent ItemMining・Approximate Algorithm・Lossy Counting・Space Saving・Data Mining.

1 Introduction

The Frequent Items Problem involves identi-
fying all items occurring more than a given
threshold from a sequence of items and repre-
sents a fundamental problem of computer science
with several applications. A number of studies
have previously addressed this problem in
reference to a data stream [3, 8] as a sequence of
items, where each item (of potentially unbounded
sequence length) arrives online and, once proc-
essed, is discarded or archived [1]. Since data for
past items usually cannot be freely accessed, it is
necessary to manage information for only candi-
date items with a limited work space.

There are two typical approaches to this
problem. One is the hash-based approach [2, 4, 5],

where each item and its frequency are summar-
ized using a data structure comprising hash
tables. The other is the counter-based approach
[6, 7, 9, 10], where each candidate item is stored
together with its (partial or estimated) frequency,
which is expected to be above a given threshold.

In this study, we focused on the counter-
based approach, for which three major algorithms
have previously been proposed: Frequent [6, 7],
Lossy counting [9], and Space saving [10]. The
Frequent algorithm is straightforward, and re-
quires less memory than the others; however, it
shows extremely low performance in precision [3,
8], because it does not guarantee the lower limit
on the estimated frequency of each output item.

Here, we propose a new algorithm (KRB) that
improves on the Frequent algorithm by enabling
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it to guarantee this lower limit. Our algorithm
utilizes the k-reduced bag concept similar to the
Frequent algorithm while storing information
about the cumulative number of delete operations
(k-reductions) together with each item newly
entered in a counting dictionary, which enables a
more precise estimation of the true frequency of
the item. Our experimental results confirmed that
the proposed algorithm achieves a high degree of
precision similar to that of the Lossy counting and
Space saving algorithms.

This paper is organized as follows: Section 2
presents related work in this area, defines the
problem in terms of a data stream, and offers a
brief overview of the Misra-Gries algorithm [11],
on which the Frequent algorithm is based; Section
3 presents the KRB algorithm; Section 4 compares
KRB with other count-based algorithms; and
Section 5 presents the conclusions.

2 Preliminaries

Here, we define basic terms concerning the
Frequent Items Problem in relation to a data
stream and explain related work. Let  be a finite
set of integers     named alphabet, where
each element is referred to as an item. Data
stream  is a potentially unbounded sequence of
items, and we denote a data stream where N
items flow as    , where .
Additionally we denote the true frequency by ,
and the estimated frequency by   for an item i.

2.1 Frequent Items Problem

We define three types of problems below. One
that returns exact answers, and others that
return less exact answers.

Definition 1 ((Exact) Frequent Items Problem).
Given a stream  of N items and a support
threshold , the problem is to return the
set of items with a frequency greater than  .

Since we need to accurately count the
frequency of each item in order to solve the
Frequent Items Problem for a data stream, this

represents a difficult task when the size of the
alphabet is large. Therefore, the following
Definition 2 allows the inclusion of false-positive
answers in the returned set, and Definition 3
provides an additional constraint to false-positive
answers with respect to their frequency.

Definition 2 (-Frequent Items Problem). Given
a stream  of N items and a support threshold
, the problem is to return a set satisfying
the following conditions: the set (i) should contain
all items with a frequency greater than  , and
(ii) may contain some other items.

Definition 3 ( -Approximate Frequent Items
Problem). Given a stream  of N items, a support
threshold  and an error parameter
, the problem is to return a set
satisfying the following conditions: the set (i)
should contain all items with a frequency greater
than  , (ii) does not contain all items with a
frequency less than or equal to  , and (iii)
may contain some other items.

2.2 Hash-List Structure

In the counter-based approach, we store
candidate items together with their estimated
frequency in a dictionary using a Hash-List
structure [7, 10], which combines a hash table
storing all counters and a doubly linked list of
buckets. Each counter is assigned to an item, and
each bucket comprises an integer and a doubly
linked list of counters, with the associated items
having the same frequency as that of the integer.
This achieved an  average time complexity
for insert, delete, and search operations and

space complexity for the work space, where c is
the maximum number of counters allowed using
this structure. This is likely a similar data
structure used in other algorithms addressing this
problem.

2.3 Misra-Gries Algorithm (MG)

In 1982, Misra and Gries [11] proposed two
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algorithms that strictly solve the Frequent Items
Problem, given an offline data of N items. The
second algorithm (MG) uses a special set (k-
reduced bag), which is defined as follows.

Definition 4.We describe an operation that deletes
distinct k items from a multiset as k-reduction.
Given a multiset, the remainder obtained is a k-
reduced bag for the multiset when we repeat the k-
reduction as many times as possible.

Note that a k-reduced bag depends on the
combination of selected items. For example, for a
multiset          , its 3-reduced bag
can be     or .

We use a dictionary to express a multiset in
the algorithm, with the k-reduction for a diction-
ary used to decrement distinct k items.

The MG algorithm works in two passes. In
the first pass, the dictionary is updated to
preclude the necessity for k-reduction every time
we access data. The update operations include the
following: (i) increment the frequency of the
accessed item, (ii) store the accessed item as a
new entry, and (iii) decrement the frequency of
each item in the dictionary and delete the items
having no frequency. This results in a dictionary
that describes the k-reduced bag. In the second

pass, we scan the data again to calculate the
accurate frequency of each item in the k-reduced
bag. Algorithm 1 shows the first pass of MG.

The following lemma and theorem describe
the maximum number of k-reductions in the first
pass of MG and its correctness.

Lemma 1 ([11]). Given an offline data of N items,
the number of k-reductions is at most


occurring in the first pass of the MG algorithm.

Theorem 1 ([11]). The MG algorithm strictly
solves the Frequent Items Problem.

Proof. Let the integer 
 with a given support

threshold . In the first pass, the number of k-
reductions is at most

  from Lemma 1, and the
frequency of each item is subtracted only 1
according to k-reduction. Since the upper bound of
the total subtracted number is at most  for
each item, all items with a frequency greater than
 remain in the k-reduced bag. In the second
pass, we calculate the true frequency of each item
included in the k-reduced bag, resulting in the
removal of items with a frequency less than or
equal to  . □
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Algorithm 1 First pass of the MG algorithm
Input: an offline data   , a threshold
Output: a k-reduced bag for a multiset storing N items

1:  
 .

2: for each   do
3: if  then

4:
5: else if  then

6: 
7: else
8: for each  do

9:  

10: if   then
11: 
12: end if
13: end for
14: end if
15: end for



2.4 Frequent Algorithm (FR)

The first pass of the MG algorithm was
repurposed by Demaine et al. [6] and Karp et al.
[7], and referred to as FR. These studies show
that FR works over a data stream to solve the -
Frequent Items Problem.

Theorem 2 ([6, 7]). FR solves the  -Frequent
Items Problem with  amortized time complex-
ity associated with updating the dictionary and


  space complexity for the work space.

2.5 Related Work

Cormode and Hadjieleftheriou [3] and Liu et
al. [8] presented reviews concerning Frequent
Item Mining over a data stream.

In the counter-based approach, counters are
stored in the data structure, with each counter
storing a candidate item and its frequency. The
FR in Section. 2.3 stores  counters. The Lossy
counting algorithm (LC) proposed by Manku and
Motwani [9] separates the given data using
buckets, each of which has an equal interval. In
LC, all items with a frequency less than the
confirmed number of buckets are deleted from
the dictionary. The improved version of LC
(modified LC; mLC) has been reviewed by Liu et
al. [8]. The Space saving algorithm (SS) proposed
by Metwally et al. [10] uses k counters sorted
according to their respective integer. In SS, an
item with the lowest frequency of all the items in
the dictionary is exchanged for a new item, the
frequency of which is one greater than the
frequency of the precluded item, if the number of
stored items exceeds k when inserting the new
item. Both LC and SS have a solution of the  -
Approximate Frequent Items Problem.

In the hash-based approach [2, 4, 5], we use a
data structure called Sketch comprising hash
tables.

3 Algorithms

FR is an algorithm that solves the  -

Frequent Items Problem. Previous experiments
[3, 8] showed that FR has less precision than the
other algorithms. We hypothesized that the
precision is dependent on the method of relaxation
used in the Frequent Items Problem. In the  -
Frequent Items Problem, returned items have no
guarantee of error tolerance, which represents
the maximum difference between the true
frequency and the estimated frequency for a
given item. In contrast, the other two algorithms
(LC and SS) solve the  -Approximate Frequent
Items Problem, because they have a lower margin
of error than FR, and items with low frequency
are hard to be output.

Both LC and SS return a set comprising the
chosen items from the final answer. The  -
Frequent Items Problem is a relaxed version of
the (exact) Frequent Items Problem. For our
algorithm, we established a support parameter
 in the -Frequent Items Problem, where  is
an error parameter. We describe methods to solve
the  -Approximate Frequent Items Problem
using a k-reduced bag.

3.1 Modified Frequent Algorithm (mFR)

mFR is a natural extension of FR. To the best of
our knowledge, this is the first presentation of
mFR, although its theoretical possibility has been
addressed previously [8].

The concept for mFR is similar to that for LC
and SS. We first solve the  -Frequent Items
Problem according to FR, and then choose the
items from the answer of the  -Frequent Items
Problem. The mFR algorithm is shown in
Algorithm 2.

Lemma 2. Let the true frequency be  and the
estimated frequency in Algorithm 2 be   for an
item i. The following inequality holds for each
returned item:  .
Proof. Let the integer

 by using an error
parameter . The equation   holds when the
k-reduction does not occur; otherwise,   is
smaller than  by the number of k-reductions.
Since the number of k-reductions is at most
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from Lemma 1, the following inequality holds:
 . □

Since we underestimate the frequency of the
returned items as at most  from Lemmas 1 and
2, we introduce Lemma 3 used for LC.

Lemma 3 ([9]). Given two parameters, a support
threshold  and an error parameter
, the set   is the
solution of the  -Approximate Frequent Items
Problem, when the following inequality holds:
 .

Proof. The item is included in the returned set if
 for an item i. The item is not included if
 for an item i, because the following
inequality holds from Lemma 2:  .
Therefore, the set   is a solution of
the -Approximate Frequent Items Problem. □

Theorem 3. The mFR algorithm solves the  -
Approximate Frequent Items Problem with

amortized time complexity associated with updat-
ing the dictionary and   space complexity for the
work space.

Proof. The mFR algorithm solves the  -
Approximate Frequent Items Problem from
Lemmas 2 and 3. This algorithm has three
operations: insertion, increment, and k-reduction.
Since we use a Hash-List, we are able to perform
the previous two operations in  average time.

Additionally, each k-reduction takes 
time, and the number of k-reductions is at most
 ; therefore, we perform the latter operation in
 amortized time. Moreover, the space com-
plexity for the work space is proportional to the
number of managed counters; hence, it is 
space. □

3.2 KRB Algorithm

Here, we propose the KRB algorithm to
solve the -Approximate Frequent Items Problem
using the k-reduced bag similar to FR and mFR.
We set

 and continue to update the
dictionary expressing the k-reduced bag while we
receive the item from the data stream.

The KRB algorithm counts the cumulative
number of k-reductions and stores it in a counting
dictionary as additional information along with
each item and its estimated frequency. Let the
cumulative number of k-reductions ( -value) at
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Algorithm 2 mFR algorithm
Input: Data stream    , thresholds 
Output: the solution of the -Approximate Frequent Items Problem

1:   .
2: for each   do
3: if  then

4:
5: else if  then

6: 
7: else
8: for each  do

9:   

10: if   then
11: 
12: end if
13: end for
14: end if
15: end for

16: output the set   from



time t be  . In practice, We store an item i and
the sum of   and   instead of   and  . We call
the sum of   and   as the appended frequency of
i and denote it by

 . We set the appended
frequency as

 , when an item i is newly
inserted in the dictionary at time t.

The other operations (incrementing and k-
reduction) are performed in the same manner as
in FR and mFR. The KRB algorithm is shown in
Algorithm 3.

Lemma 4. Let the true frequency be , the
estimated frequency be   and the appended
frequency in Algorithm 3 be

     , where
  is the  -value at time t for an item i. The
following inequality holds for each returned item:


 .

Proof. Let the integer
 by using an error

parameter . The true frequency  is less than or
equal to the appended frequency

 for an item i in
the dictionary, because the true frequency of each
item not stored in the dictionary is less than or
equal to the  -value at any given time. This
suggests that the inequality

 holds for each
item i in the dictionary. Let the time at which the
item was inserted be t for each item i in the

dictionary. The difference between the true
frequency  and the appended frequency

 is at
most   (i.e., the -value at time t), resulting in the
following equation:

 . □

Since we overestimate the frequency of the
returned items as at most the  -value from
Lemma 4, we introduce Lemma 5.

Lemma 5. Given two parameters, a support
threshold  and an error parameter
, the set

 is the solution
of the  -Approximate Frequent Items Problem
when the following inequality holds:


 .

Proof. We assume that the following inequality
holds for each item i in the returned set:


 . The item i is included in the
returned set if  for an item i. The item is
not included if  for an item i, because
the following inequality holds by the hypothesis


 .
Here, the inequality



holds because the inequality   holds if
the item i is inserted in the dictionary at time t,
where  . Therefore, the set

 is a
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Algorithm 3 KRB algorithm
Input: Data stream     , thresholds      
Output: the solution of the -Approximate Frequent Items Problem

1:     .

2: for each   do
3: if  then
4:




5: else if  then
6: 

 
7: else
8: for each  do
9: 




10: if 
 then

11: 
12: end if
13: end for
14:  
15: end if
16: end for
17: output the set

 from



solution of the  -Approximate Frequent Items
Problem. □

Theorem 4. The KRB algorithm solves the  -
Approximate Frequent Items Problem with

amortized time complexity associated with updat-
ing the dictionary and   space complexity for the
work space.

Proof. The KRB algorithm solves the  -
Approximate Frequent Items Problem
from Lemmas 4 and 5, and has the same time and
space complexity as mFR. □

3.3 Comparison of Algorithm Performances

We compared the counter-based algorithms
addressing the Frequent Items Problem accord-
ing to time complexity, space complexity, and a
margin of error (Table 1). We denoted margin of
error by [a, b], which means that the following
inequality holds for the true frequency  and the
estimated frequency  for an item i:
.
We first compared the algorithms using the

k-reduced bag (FR, mFR, and KRB). The results
showed the same time complexity as

amortized time, with the space complexity being
proportional to the number of counters owing to
the feature of the data structure. Therefore, FR
showed less space complexity than mFR and
KRB. For the margin of error, FR does not

guarantee a lower limit on the estimated fre-
quency of each returned item, and mFR and KRB
have the lower and higher limits, respectively. As
  , the KRB algorithm has a narrower
margin of error on the estimated frequency than
the mFR algorithm.

We then compared KRB, mLC, and SS. The
KRB algorithm showed similar time and space
complexity as SS, with both KRB and SS
exhibiting better complexities than mLC. For the
margin of error, KRB and mLC were at most  ,
and SS was at most  . The   used for the KRB
and mLC algorithms was less than or equal to  .
Given the case of   , for mLC,   was the
number of confirmed buckets, indicating that the
equation held in the following case: the item was
inserted into the dictionary following confirmation
of the most recent bucket. In the KRB algorithm,
the equation satisfied all the following conditions:
(i) the number of k-reduction was  , which is
rare; and (ii) an item was inserted between 

th operation and   th operation. Additionally, the
item with a  -value of  remained when we
returned the answer set in both algorithms.
Therefore, most items had a -value lower than
 , and the KRB and mLC algorithms had better
margins of error than the SS algorithm.

4 Experiment

Here, we compared the KRB algorithm with
the following counter-based approaches: FR, mFR,
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Table 1. Comparison of time and space complexity, and the margin of error between algorithms.

Name Time complexity Space complexity Margin of error
Frequent
[Demaine et.al. 2002]  amortized 

   

Modified Frequent
natural extension of FR  amortized

   

KRB
proposed  amortized

   

Lossy counting
[Manku and Motwani 2002]    amortized

    

Modified Lossy counting
[Liu et.al. 2011]    amortized

    

Space saving
[Metwally et.al. 2005] 

   



mLC, and SS.
FR returns a solution of the  -Frequent

Items Problem, and the others returns a solution
of the  -Approximate Frequent Items Problem.
Our goal was to (i) compare algorithms using the
k-reduced bag and (ii) compare solutions from
KRB with those from LC, and SS for the  -
Approximate Frequent Items Problem.

We implemented our proposed algorithms,
FR, SS, and mLC, using a Hash-List data structure.
All the algorithms3 were implemented using C
compiled with g ++ (Homebrew GCC 8.2.0) and
executed on a Mac Book Pro (MacOSX 10.14.1,
Dual-core Intel Core i5 2.9GHz, 8 GB RAM). We
used artificial data generated from a Zipfʼs
distribution varying the skew parameter s from 0.
0 to 2.0. The data had a size of  and included
items chosen from an alphabet of size . We
compared the efficiency of these algorithms with
respect to the average time needed for five
executions, the memory used for the data
structure, and the recall and precision under the
experimental conditions.

First, we moved the skew parameter s from
0. 0 to 2. 0 when we fixed a support threshold
. Second, we set the support threshold  to
0.001, 0.005, 0.01, 0.05, and 0.1 on fixing the skew
parameter as . In both cases, the error
parameter was set to  for each support
threshold. The results are shown in Figure 1,
where recall and precision are displayed only in
cases of computable values because values cannot
be calculated when no answer is determined.

A comparison of FR, mFR, and KRB indi-
cated that the speeds of the three algorithms
were approximately similar. FR used less memo-
ry than the other algorithms, which agreed with
our approximation of its theoretical complexity.
The three algorithms all guaranteed that false-
negative answers were not included in the
returned set, and we confirmed a recall of 1 (100
%) for each algorithm. Additionally, mFR and
KRB showed much higher precision than FR,
which was approximately 0.1 (10 %). Specifically,

KRB returned no false-positive answers for each
input data.

A comparison of KRB, mLC, and SS indicated
approximately the same speed for all the algo-
rithms. We found that mLC used less memory
than KRB and SS. Furthermore, the recall and
precision values for all three algorithms were 1.0
(100 %).

5 Conclusion

We improved FR to apply a tolerance error to
its false-positive answers and proposed a new
algorithm (KRB) to solve the  -Approximate
Frequent Items Problem. We introduced the k-
reduced bag similar to its use in FR and
introduced a new parameter ( -value) to repre-
sent the number of k-reductions. This new
algorithm allows the estimation of the true
frequency of items in a data stream more
precisely.

Our algorithm was theoretically competitive
according to complexity measurements with
existing algorithms (mLC and SS), with an
amortized time complexity for updating the
dictionary of  and a space complexity for the
work space of  , both of which outperformed
mLC, where  is a given threshold for error
tolerance. Moreover, the margin of error was at
most the -value at the time of item insertion into
the dictionary, which outperformed SS.

Our experimental results confirmed that the
proposed algorithm achieved higher precision
than FR and mFR, and displayed similar values as
mLC and SS with respect to both speed and
precision.

The results suggest that the algorithm
presented here can be applied to Frequent
Itemset Mining [12].
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Fig. 1. Performance of algorithms on artificial data. a: Time vs. s. b: Time vs. . c:
Memory vs. s. d: Memory vs. . e: Recall vs. s. f: Precision vs. s.
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