HOKUGA 北海学園学術情報リポジトリ

学校法人北海学園 北 海 学 園 大 学 北 海 斎 科 大 学

タイトル	レーザー誘起水熱合成を用いたナノ材料の選択合成
著者	藤原,英樹; Fujiwara, Hideki
引用	工学研究:北海学園大学大学院工学研究科紀要(23): 1-8
発行日	2023-09-30

レーザー誘起水熱合成を用いたナノ材料の選択合成

藤 原 英 樹*

Selective synthesis of nanomaterials using laser-induced hydrothermal synthesis

Hideki Fujiwara*

要 旨

本研究では、金属ナノ構造の光ナノアンテナ効果(プラズモン共鳴効果)を利用し、照射したレーザー光 をナノサイズの領域に集光するのと同時に、光吸収に伴う金属ナノ構造の発熱をナノサイズの熱源として利 用した新しいナノ材料合成法(レーザー誘起水熱合成法/プラズモン支援水熱合成法)を開発した研究につ いて紹介する.本手法では、レーザー光の光吸収に伴う局所加熱を利用し、半導体材料をナノスケールの領 域に水熱合成する方法である.光吸収を起こす金属薄膜やナノ構造の材質や形状を適切に設計することによ り、短時間に半導体ナノ構造を合成できるだけでなく、設計した金属ナノ構造を利用することにより、光の 回折限界を超えた領域内に局所的かつ選択的に半導体ナノ構造を合成できるといった特徴を持つ.このよう な手法は、金属電極上に直接的に発光・光電変換素子や光触媒構造を作製できるだけでなく、金属ナノ構造 内に半導体材料を適切に配置することにより、ナノサイズの発光素子やエレクトロニクス素子、超高感度に 光検出する装置など、金属一半導体ハイブリッドデバイスへの応用が期待される.

1. まえがき

金属表面に光を照射すると、照射光の吸収によ り金属内部の自由電子が集団振動を起こし、この 金属表面に入射電場よりも遥かに強い電場を誘起 する表面プラズモン共鳴(SPR: Surface Plasmon Resonance)と呼ばれる現象が誘起される. また. 金属をナノサイズまで微粒子化すると、自由電子 の集団振動はナノ粒子に分極を誘起し、その表面 に局在化した局在表面プラズモン共鳴(LSPR: Localized Surface Plasmon Resonance) が誘起さ れ,特定の波長の光を強く吸収・散乱する (図 1)¹⁾. 照射した光のエネルギーが金属ナノ粒子 の表面プラズモンに変換されるため、光の回折限 界を超えるナノサイズの微小領域に集光されたと も解釈できるため、この効果を光アンテナ効果と 呼ぶ、この際、共鳴波長や周辺に誘起される電場 強度は、金属構造の材質や形状、サイズに応じて 変化するため、適切に金属ナノ構造を設計するこ

とで任意の波長の光を金属ナノ構造に閉じ込める ことが可能となる.このため、金属近傍に存在す る原子や分子は、この強い局在電場により発光や 吸収、散乱などの様々な光-物質間の相互作用が 増強されるため、フォトニクスやエレクトロニク ス、バイオなどの分野において有用な技術として 利用されている.特に半導体の分野では、金属と 半導体を組み合わせることにより(金属—半導体 ハイブリッド構造)、発光や光電変換、光触媒反応 などの効率化に向けた研究が多数報告されている

* 北海学園大学大学院工学研究科電子情報生命工学専攻

Graduate School of Engineering (Electronics, Information, and Life Science Eng.), Hokkai-Gakuen University

が²⁻⁶⁾, この効果を発揮するには,小さな金属ナノ 構造の適切な位置(局在電場の強い位置)に半導 体ナノ材料を高精度に配置する必要がある.

このような問題に対し、これまでの先行研究で は、局在プラズモン場の急峻な電場勾配を利用し た分子や原子の光捕捉が試みられており、高強度 の局在プラズモン場に分子を配置する方法として 注目を集めている⁶⁻⁸⁾.しかし、ブラウン運動等の 熱揺らぎにより、 意図した場所に正確に材料を配 置する事は困難である.また、多数の金属ナノ構 造上に沢山の分子を塗布あるいは分散する事で. 確率的に良い配置を取るものを選択するという方 法も提案されているが、正確かつ確実に配置する ことは不可能である⁹⁾.また、原子間力顕微鏡の 探針を用い、ナノ材料を金属ナノ構造の局在場中 に移動させる方法により、発光効率が増大した研 究報告も存在するが¹⁰⁾,一つ一つのナノ材料を原 子間力顕微鏡の探針で移動させるため、時間やコ ストがかかるといった問題がある。このため、局 在プラズモン場とナノ材料間の高効率結合を実現 するためには, 簡便かつ制御可能な方法で金属ナ ノ構造のプラズモン場中にナノ発光体を配置する 必要がある.

一方、本研究で注目する水熱合成法は、高温高 圧下で原料を溶解し、種結晶に再析出させ結晶成 長させるソルボサーマル法の一つであり、溶媒に 水を使用する方法である.一般的な水熱合成で は、前駆体水溶液をヒーターで数~十数時間加熱 するだけで、酸化亜鉛や酸化チタンなどの半導体 材料を比較的温和な条件(100℃前後)で合成する ことが可能である.このため、半導体微細構造を 作製するのに使用される成膜装置やスパッタ装 置,原子層堆積装置などの大型かつ高価な装置や 清浄環境を必要とせず,作製手順も単純である. しかし、合成時間が長く、溶液加熱温度は瞬時に 変化しないために、所望のサイズや形状、結晶性 を精密に制御した半導体ナノ材料を合成すること は難しい、また、溶液全体が加熱されるため、基 板全体に半導体が合成され、狙った箇所に選択的 に半導体を合成することも難しい.

本研究では、ヒーターで前駆体溶液全体を加熱 するのではなく、基板の光吸収を熱源とした水熱 合成法(レーザー誘起水熱合成法)に注目し た^{11,12}した.本稿では、このレーザー光吸収によ る局所加熱を熱源とした選択的な半導体ナノ材料 合成法(レーザー誘起水熱合成法/プラズモン支 援水熱合成法)を提案し、実際に酸化亜鉛(ZnO) のナノロッドアレイ構造や金一酸化亜鉛ハイブ リッドナノ構造の作製を試みた最近の結果につい て紹介する^{13,14}. この方法はレーザー光の吸収を 加熱源としているため、レーザーを照射した場所 でのみ合成反応が誘起される選択性を示すだけで なく、レーザー照射の ON-OFF により高速な加 熱冷却を実現できるため、精密な加熱条件の制御 が可能となり、所望の構造を精密かつ短時間に作 製することが可能となる新しいレーザープロセス となると期待される.

2. 水熱合成法

本実験で使用する酸化亜鉛は,水熱合成法の中 でも温和な条件で合成が可能な半導体材料であ り,圧力容器を必要とせず,100℃未満の温度で合 成反応が進む.実験では,500 mMの硝酸亜鉛六 水和物水溶液(分子量297.49,ZnNT)と同濃度 のヘキサメチレンテトラミン水溶液(分子量 140.186,HMT)を30 mlずつ混合し,超純水340 mlを加えて75 mMの前駆体溶液を作製した.こ の前駆体溶液を加熱することにより,以下の5つ の反応によりZnOが成長すると報告されている.

$C_6H_{12}N_4 + 6H_2O \Leftrightarrow 4NH_3 + 6HCHO$	(1)
$\rm NH_3 + H_2O \Leftrightarrow \rm NH_3 \cdot H_2O$	(2)
$NH_3 \cdot H_2O \Leftrightarrow NH_4^+ + OH^-$	(3)
$Zn^{2+} + 2OH^{-} \Leftrightarrow Zn(OH)_{2}$	(4)
$Zn(OH)_2 \rightarrow ZnO + H_2O$	(5)

式(1)において、HMTの加水分解によるアンモ ニアの生成は 70℃以上で徐々に起こるとされて おり、HMT は pH を安定させる緩衝材としての 役割があると考えられている.(5)の反応は加熱に より進行するが、温度が低い場合には水酸化亜鉛 (Zn (OH)₂)の形成で反応が止まってしまう.ま た、X 線吸収分光測定により、水溶液温度が 60℃ 以上の場合、ZnO は Zn[(H₂O)₆]²⁺ から直接結晶 化すると報告されており、式(4)で形成される Zn (OH)₂ は 60℃以上では熱力学的に不安定で寿命 が極めて短いものと考えられる.つまり 60℃以 上での合成により高品質な ZnO 構造ができる. また、沸騰による ZnO 構造の破壊を防ぐため、一 般には 90℃程度の加熱条件で合成が行われてい る.

3. 金薄膜コートガラス基板を利用したレー ザー誘起水熱合成

光吸収を誘起する基板として金薄膜コートガラ ス基板を用いた、市販のガラス基板を、アセトン を含ませたベンコットで表面を擦り、その後アセ トン,メタノールでそれぞれ3分間超音波洗浄を 行い, 窒素ガスで乾燥させた. この基板にイオン コーターで金コートを行い(成膜条件:真空度20 mPa, ターゲット電流6mA, 成長時間10分), 膜 厚 50 nm の金薄膜を作製した. 前駆体溶液(濃 度:25-150 mM)の入ったボトムディッシュに金 薄膜コートガラス基板を被せ、溶液界面に金薄膜 が接するように配置した. このガラス面側から波 長 405 nm の CW レーザー光(照射スポット径: 50 µm)を照射することで金薄膜を加熱し、ZnO ナノロッドアレイ構造を成長させた(図2).こ の時、レーザー照射時間、レーザー照射強度、前 駆体溶液濃度などの作製パラメータを変化させる ことでナノロッドサイズの調整を行い、ランダム レーザー発振に適した構造の作製条件の探索を 行った. レーザー照射後, 超純水を用いて金薄膜 コートガラス基板を洗浄し、試料を自然乾燥した. 試作構造は、電子顕微鏡観察により構造サイズを 確認した後、顕微分光装置を用いて発光スペクト ル測定を行った.

図3(a),(b)は試作したZnOナノロッドアレ イ構造の電子顕微鏡画像である(レーザー照射強 度:1.25 kW/cm²,照射時間:10分,溶液濃度: 25 mM,50 mM).照射スポット近傍にのみ, ZnO 由来の六角形状のナノロッドが密集して成 長している様子が確認できる.また,レーザー照 射強度や時間,前駆体溶液濃度などの作製条件を 変えると,図3(c)に示すようにナノロッド径や 密度が変化することを確認した.ミー散乱理論の 計算結果から,円柱状の構造を仮定した場合,直 径 100 nm 程度のロッドで共鳴散乱が起きると予

図 2 (a) レーザー誘起水熱合成法の概念図と(b) 試 作した ZnO ナノロッドアレイ構造の電子顕微 鏡画像.

想され,強い多重散乱による光閉じ込めが実現で きるはずである.そこでレーザー照射条件と前駆 体溶液濃度の最適化を行い,照射強度1.25 kW/cm²,照射時間10分,前駆体溶液濃度100 mMにおいて所望の構造を作製することに成功 した.

この ZnO ナノロッドアレイ構造に紫外パルス レーザー(355 nm, 1 kHz, 300 ps)を照射し(集 光スポット径:70 µm),発光スペクトルの励起光 強度依存性を測定した結果を図4に示す.その結 果,励起光強度40 MW/cm²付近において,離散 的かつシャープなピークが現れ,レーザー発振が 誘起されることを確認した.その他の条件で作製 した ZnO ナノロッドアレイ構造においても同様 の測定を行った結果,ミー散乱理論からの予想通 り,上記の条件で作製した構造のしきい値が一番 低いことを確認した.これらの結果から,レー ザー照射スポット内に簡単かつ短時間に ZnO ナ ノロッドアレイ構造を作製し,作製条件の制御に

図3 (a, b)前駆体溶液濃度25,50 mM で作製した ナノロッドアレイ構造の電子顕微鏡画像.図 中の白線は500 nm を示す.(c) ZnO ナノロッ ドの直径の前駆体溶液濃度依存性.レーザー 照射強度1.25 kW/cm²,照射時間10分.

図4 発光スペクトル(励起光強度58 MW/cm²)と 発光ピーク強度の励起光強度依存性.使用し た試料は、レーザー照射強度1.25 kW/cm²,照 射時間10分,前駆体溶液濃度100 mMで作製 した.

よって低しきい値のランダムレーザーを作製でき ることを示した.

金ナノ構造を利用したプラズモン支援水 熱合成による半導体ナノ材料の選択合成

上述の金薄膜コートガラス基板では、ナノロッ ドアレイ構造はマイクロメートルサイズの照射ス ポット程度の範囲に合成される.この合成領域を さらに極小化するため、レーザー照射スポットよ りも小さい、ナノメートルサイズの金ナノ構造の プラズモン共鳴を熱源として用いた水熱合成を 行った.

プラズモン場を誘起するための構造として,広 く使用されている金ナノバー構造。金ナノダイ マー構造,および,金ナノバタフライ構造の3つ の構造の局在場分布および熱分布の計算を行っ た.いずれの構造もガラス基板上の金ナノ構造を 仮定し、水中で波長1064 nm に光共鳴を持つ構造 を数値解析的にデザインした. 電場分布計算には COMSOL Multiphysics を用い、金の屈折率情報 は文献15)を用いた、その後、電場分布計算結果を 元に、文献^{16,17)}に従い光吸収量および熱分布を計 算した. この数値解析結果をもとに, 電子線描画 リソグラフィーおよびリフトオフにより、洗浄し たガラス基板上に数値解析的に設計した金ナノ構 造(厚み 30 nm)を作製した⁶⁻⁸⁾. この際, ガラス と金の接着性を高めるため。間に5nm 程度のク ロム層をコートしている. 作製した試料基板上に テフロンリングを配置し、その中に前駆体溶液 (HMT 75 mM, ZnNT 75 mM)を等量滴下した後、 カバーガラスで蓋をすることで前駆体溶液の乾燥 を防ぐチャンバーを形成した. この試料を顕微鏡 のステージ上に置き, 波長 1064 nm の直線偏光 CW レーザー光を 100 倍対物レンズによって金ナ ノ構造に集光照射した. ZnO 合成条件を調べる ため、構造ごとにレーザー強度と照射時間を変え て合成を行い、レーザー照射後の試料の電子顕微 鏡観察を行った.

図5は、一般的に強い局在場を誘起できるナノ ギャップを持つ金ナノダイマー構造の数値解析結 果である、ダイマー構造では、構造に数 nm の ギャップを設けることで局在場をこのギャップ部 に集中することが可能となる.このギャップ部に ナノ発光体を配置できれば、プラズモン共鳴によ り発光が著しく増強される.計算では、使用する

図 5 金ナノダイマー構造の(a)局在場分布と(b)温 度分布の計算結果. 図中の E と書いてある矢 印が照射偏光の向きを示す.

図 6 金ナノダイマー構造を用いたレーザー誘起水 熱合成結果.照射時間:(a)未照射,(b)50 ms, (c)250 ms.レーザー照射強度 600 kW/cm², 前駆体溶液濃度 75 mM.

レーザー波長 1064 nm において水中で共鳴を持 つように構造を設計し,一辺140 nm,高さ30 nm, ギャップ距離 10 nm の構造をモデル化した. 結 果を見ると、長軸方向の偏光を照射した場合、 ギャップ部に強い局在場が生じることが確認でき る.このギャップ部の局在場を加熱源とし.金ナ ノダイマー構造の温度分布計算を行ったところ. 金の高い熱伝導率により,ギャップ部だけでなく, 構造全体に均一に温度が上昇することがわかった (図5(b)). この結果を基に水熱合成の実験を 行った結果が図6である.計算から予測されたよ うに、ギャップ部だけでなく、ナノ構造上全体に ZnO が合成されている様子が確認できる.しか し, 熱源の無い, ガラス基板上では ZnO の合成は 確認できず,ナノサイズの ZnO 発光体を金ナノ 構造を用いて合成することが可能となることを示 した.

合成箇所をギャップ部のみに限定するため,

図7 金ナノバタフライ構造の(a, b)局在場分布と (c, d)温度分布の計算結果. 照射光強度 100 kW/cm². 図中のEと書いてある矢印が照射偏 光の向きを示す.

ギャップ部に電子線描画で作製できる最小サイズ の細さを持つ金ナノバー構造を犠牲構造として導 入した構造を考案した. 図7に波長1064 nmの 縦横偏光を照射した際の金ナノバタフライ構造の 局在場分布と温度分布計算した結果を示す、本構 造は2つの菱形構造の中心にバー構造を縦方向に 配置しており,縦偏光照射によりバー構造を選択 励起し、横偏光照射によりギャップ部が強く励起 される.計算の結果,強度100 kW/cm²の縦偏光 照射により、バー構造と菱形構造において約50℃ もの温度差(横偏光の場合は10℃程度)が生じる ことが示唆されるため、縦偏光照射により水熱合 成を行うとバー構造上にのみ ZnO が選択的に合 成されると考えられる. また, ZnO を合成した 後、横偏光照射により ZnO 発光体を励起すると、 ギャップ部のプラズモン共鳴により ZnO からの 発光が強く増強されることが期待される.

この計算結果を基に図8(a)に示す電子顕微鏡 画像の構造をナノリソグラフィー技術やリフトオ フ技術を用いて作製した.この構造に縦偏光の 1064-nmレーザー(70 kW/cm²)を10 ms 間照射 した試料の電子顕微鏡画像を図8(b)に示す.計 算結果の温度分布の予測通り,バー構造上にのみ 合成されている様子が確認できる.この構造が ZnOかどうかを確認するため,この構造を横方向 に走査した EDS 測定を行った結果,中心のナノ バー構造付近からのみ Zn の信号を検出たことか ら,ナノバー上に選択的に ZnO が合成されたと 考えられる.これらの結果から,光の回折限界を 越えるナノメートルサイズの領域内において選択 的に半導体構造を合成できる手法の開発に成功し たと言える.

図8 金ナノバタフライ構造の電子顕微鏡画像.(a) 縦偏光照射前,(b)照射後.レーザー照射強度 70 kW/cm²,照射時間10 ms,前駆体溶液濃度 75 mM.

5. まとめ

本稿では、レーザーによる局所加熱を利用した 選択的な ZnO ナノ構造の合成方法に関する研究 成果について紹介した. レーザーの制御性の良さ (局所加熱, ON-OFF の切り替えの速さ, 照射パ ワー・時間の厳密な制御など)により、ナノスケー ルの領域にサイズや形状を任意に制御した半導体 構造を短時間に合成できることを示した。その結 果,3節では金薄膜上にアニールなどの後処理を 必要としない、結晶性に優れた ZnO ナノロッド アレイ構造の作製に成功し、構造制御により低し きい値の紫外ランダムレーザーを誘起できること を示した.また、4節では、金属ナノ構造のプラ ズモン共鳴を利用した局所加熱を利用し、金属ナ ノ構造の任意の場所に意図的かつ選択的に ZnO ナノ構造を作製する方法(プラズモン支援水熱合 成法)を提案し、照射偏光制御により ZnO 発光体 をナノ金構造のナノサイズのギャップ部に選択的 に合成することに成功した.これらの結果から、 金ナノ構造の光学的特性と熱的特性の両方のデザ インにより、プラズモン共鳴の選択的励起による 金ナノアンテナ構造上への局所的な材料合成が可 能となることを初めて実証した.

謝辞

本研究は、科研費(JP20K05290, JP21H04657, JP23H01825)および天田財団一般研究助成(AF-2021226-B3)の支援によって行われた.実験に用 いた電子顕微鏡やEDS装置、ナノリソグラフィー 装置は北海道大学のオープンファシリティを利用 した.本研究は、北海道大学・笹木敬司教授、ク リストフ・パン助教、新宅貴志君、鈴木達朗君と の共同研究成果である.また、本研究の一部は、 学部4年生の卒業研究プログラムとも連携して進 め、吉田知代君、辰好起君、砂原宗典君、古村将 也君らの熱心な協力に謝意を表する.

【参考文献】

- 1) 岡本隆之, 梶川浩太郎: プラズモニクス, 講談社, 2010.
- 2) R. Oulton et al., Nature 461, 629 (2009).

- 3) K. Ueno *et al.*, J. Am. Chem. Soc. **130**, 6928–6929 (2008).
- 4) K. Ikeda et al., J. Chem. Phys. 127, 111103 (2007).
- 5) S. Yen-Hsun *et al.*, Light: Science & Applications 1, 14 (2012).
- 6) Y. Tanaka et al., Nano Lett. 13, 2146 (2013).
- 7) C. Pin et al., ACS Omega 3, 4878 (2018).
- 8) H. Fujiwara et al., Nano Lett. 21, 6268 (2021).
- 9) A. Kinkhabwala et al., Nat. Photonics 3, 654 (2009).
- 10) S. Schietinger et al., Nano Lett. 9, 1694 (2009).
- 11) J. Yeo et al., Adv. Funct. Mater. 23, 3316 (2013).
- 12) J. Yeo et al., ACS Nano 9, 6059 (2015).
- 13) H. Fujiwara et al., New J. Phys. 18, 103046 (2016).
- 14) H. Fujiwara et al., Nano Lett. 20, 389 (2020).
- 15) P. B. Johnson, R. W. Christy, Phys. Rev. B 6, 4370 (1972).
- 16) G. Baffou et al., Phys. Rev. Lett. 104, 136805 (2010).
- 17) H. Ma et al., Nano Lett. 14, 612 (2014).