HOKUGA 北海学園学術情報リポジトリ

学校法人北海学園 北 海 学 園 大 学 北 海 斎 科 大 学

タイトル	Sパラメータ法に使用するセミリジッドケーブル製ジ グに関する研究
著者	笹森, 崇行; Sasamori, Takayuki
引用	工学研究:北海学園大学大学院工学研究科紀要(23): 27-31
発行日	2023-09-30

Sパラメータ法に使用する セミリジッドケーブル製ジグに関する研究

笹森崇行*

A Study on Jig for S-Parameter Method using Semi-Rigid Cable

Takayuki Sasamori*

要 旨

ダイポールアンテナやループアンテナ等の平衡給電を行うアンテナの入力インピーダンスを測定する方法 として、ベクトルネットワークアナライザで平衡給電アンテナのSパラメータを測定し、計算によって入力 インピーダンスを導き出すSパラメータ法が提案されている。本論文ではSパラメータ法においてアンテ ナと測定ケーブルを接続するために使用するセミリジッドケーブル製のジグを取り上げて、ジグ製作の注意 点を調べる。アンテナの放射素子を取り付ける内導体の長さ、2本のセミリジッドケーブルの間隔とハンダ 付けの範囲、および、2本のセミリジッドケーブルの外導体先端のずれによる反射係数への影響を明らかに した。

1. まえがき

スマートフォンや VHF 帯無線通信システムに おいて,無線機きょう体を手で持つことによりア ンテナの特性が大きく変化することが指摘されて いる^{1,2)}.この原因となるきょう体上を流れる電 流を減少させる方法の一つとして,ダイポールア ンテナやループアンテナ等のように左右対称な構 造をもつ平衡給電アンテナを使用する方法が提案 されている³⁾.入出力ポートが不平衡端子である ベクトルネットワークアナライザ(VNA)を用い て平衡給電アンテナの入力インピーダンスを測定 する場合,バラン(平衡-不平衡変換器)やハイブ リッド回路を使用するのが一般的である.しかし ながら,多くのバランやハイブリッド回路は特定 の周波数範囲で使用するものであり,広い周波数 範囲の測定には不向きである.

一方,図1に示すようにVNAの2つの入出力 ポートを同時に用いて平衡給電アンテナの入力イ ンピーダンスを測定する方法であるSパラメー タ法が報告されている⁴⁻¹⁰⁾.この方法は,VNAを 用いてSパラメータを測定し,計算によってその 入力インピーダンスの値を求める間接測定法の一 種である.Sパラメータ法は,アンテナを測定す るケーブルの影響を低減できることから RFID 等 の小形アンテナの測定や¹¹⁻¹³⁾,バランやハイブ リッド回路を使用しないことから平衡インピーダ ンスの広帯域測定に適している^{14,15)}.

Sパラメータ法では平衡アンテナと VNA の入 出力ポートにつないだ測定用同軸ケーブルの間を 接続するために、セミリジッドケーブル (SRC) などの同軸線路や誘電体基板で製作したマイクロ

* 北海学園大学大学院工学研究科電子情報生命工学専攻

Graduate School of Engineering (Electronics, Information and Life Science Eng.), Hokkai-Gakuen University

ストリップ線路からなる測定用のジグを使用す る.

図2にはSRCで製作したジグとSRCの内導体 に取り付けたダイポールアンテナの例を示す.現 在までのところ、このように各測定者が見よう見 まねでジグを製作しているのが実情であり、より 正確に測定するためのジグ製作のポイントは報告 されていない.本研究ではFDTD法を用いた数 値計算により、SRC 製ジグを製作する際の注意点 を明らかにする.

2. 計算モデル

図3にSRC 製ジグの計算モデルを示す。平行 に配置した2本のSRCの外導体をハンダ付けで 電気的に接続して、外導体から露出させた内導体 にダイポールアンテナの放射素子を取り付ける. 2本の SRC の間隔を S_w , 外導体先端のずれを L_a , SRC 間をハンダ付けする部分の位置を St と Sb で 表す. SRC の間隔が S_m=0 mm のときは外導体 同士が接触するので、ハンダ部分の設定は不要と なる. 放射素子を取り付けるために露出させた内 導体の長さは、一方を L_i 、他方を L_i+L_o とする. アンテナとは反対側の SRC の端部は FDTD 法の 吸収境界壁 (PML) に接触させる. SRC は RG405 をモデル化しており、そのパラメータを表1に示 す. 放射素子は一辺 0.4 mm の正方形断面とし, 2本の放射素子の長さは同一である。ダイポール アンテナの全長は 15 mm とし, SRC の間隔 S_w を 変える際には両方の放射素子の長さを調整する. 2本のSRCの外導体の先端位置が揃っている場 合(*L*_a=0 mm)は、計算モデルが左右対称なので

表1 セミリジッドケーブルのパラメータ

外導体直径	2.2 mm	
誘電体直径	1.8 mm	
内導体直径	0.4 mm	
比誘電率	2.1	

対称回路(S₁₁=S₂₂)かつ相反回路(S₁₂=S₂₁)となる. 左右非対称モデルのときは,電源と導線をもう一方のSRCへ移動させてS₂₂とS₁₂も計算する.本論文では,測定用ジグによる影響を補正するために開放端補正を行い,校正面の位置を外導体先端にする¹⁴.

3. 計算結果

ダイポールアンテナの反射係数を求めることに より、(1)内導体の長さ L_i 、(2)SRCの間隔 S_w 、 (3)ハンダ付けの範囲 $S_t \ge S_b$ 、(4)外導体先端 のずれ L_o による影響を調べる.数値計算には OpenFDTDを用いる¹⁶⁾.さらに、比較のために 直径 0.4 mm、全長 15 mmのダイポールアンテナ をモーメント法(MoM)で計算した結果を示す.

図4 内導体の長さ L_i を変えたときの反射係数 ($S_w = 0 \text{ mm}, L_o = 0 \text{ mm}$).

3.1 内導体の長さ L_iの影響

内導体の長さ L_i を変えたときの反射係数を図 4に示す.ここでは SRC の間隔を $S_w = 0$ mm,外 導体先端のずれを $L_o = 0$ mm とする.図4より, 内導体の長さ L_i を長くすると,共振周波数が下 がる様子が分かる.これはSパラメータ法の校 正面が外導体の先端であるため,反射係数には校 正面から先にある内導体の影響も含まれることが 原因である.図4の結果では、モーメント法の結 果と比較することで内導体の長さ L_i は 2 mm 程 度が適切であることが分かる.ただし、この長さ は外導体の直径等で変わると考えられる.

3.2 SRC の間隔 S_w の影響

図2に示すように、2本のSRCの外導体をハ ンダ付けするとき、SRC間にハンダが入り込むた めにわずかな間隔 S_w が生じる.SRCの間隔 S_w を変えたときの反射係数を図5に示す.ここでは 内導体の長さを $L_i=2$ mm, ハンダ付けの範囲を $S_i=0$ mm, $S_b=50$ mm, 外導体の先端のずれを $L_o=0$ mm とする.また、表2にはSRCの間隔 S_w を変化させたときの、反射係数が-10 dB以下 になる周波数帯域の下限周波数 f_L ,上限周波数 f_H , 帯域幅 BW をまとめる.表2より、SRCの間隔 S_w を広げると、帯域幅 BWが狭くなることが分 かる.例えば、 $S_w=0.4$ mm の場合を $S_w=0$ mm と比較すると、帯域幅の変化は-1.57%である. したがって、2本の SRC の間隔 S_w をできる限り 小さくすると良いことが分かる.

図 5 SRC の間隔 S_w を変えたときの反射係数 ($L_i=2 \text{ mm}, L_s=0 \text{ mm}, S_i=0 \text{ mm}, S_s=50 \text{ mm}$).

表 2	反射係数がー	10 dB 以下とな	る周波数帯域の
	下限周波数 f _L ,	上限周波数 f _H ,	帯域幅 BW

S_w [mm]	0	0.4	0.8	1.2
f_L [GHz]	8.72	8.77	8.83	8.91
f_{H} [GHz]	10.00	10.01	10.06	10.08
BW[GHz]	1.27	1.25	1.23	1.17

3.3 ハンダ付けの範囲 S_t, S_bの影響

図6にはハンダ付けをする範囲を変えたときの 反射係数を示す.ここでは内導体の長さを $L_i=2$ mm, SRCの間隔を $S_w=0.4$ mm, 外導体先端の ずれを $L_o=0$ mm とする.まず,外導体全体をハ ンダ付けする場合($S_i=0$ mm, $S_b=50$ mm)と,

図 6 ハンダ付けの範囲 S_t と S_b を変えたときの反射 係数 (L_i=2 mm, L_b=0 mm, S_t=0 mm, S_b=50 mm).

図7 ジグ先端のずれ L_a を変えたときの反射係数 ($L_i=2$ mm, $S_w=0$ mm).

外導体の先端から2mmまでの範囲をハンダ付け する場合($S_t=0$ mm, $S_b=2$ mm)は、反射係数が ほぼ一致している.一方、外導体の先端部分を離 して、 $S_t=2$ mm から $S_b=4$ mm の範囲でハンダ 付けをすると、反射係数が変化する.したがって、 外導体の先端からハンダ付けをすることが大切で あり、その範囲は2mm 程度で良いことが分かる. さらに、ハンダ付けをしない場合については、反 射係数が正しく求められていないことが分かる.

3.4 外導体先端のずれ L_aの影響

図7には2本の外導体先端のずれ L_o を変えた ときの反射係数を示す.ここでは内導体の長さを $L_i=2$ mm, SRCの間隔を $S_w=0$ mm とする.図 7より、外導体の先端位置をずらすことにより反 射係数が変わることが分かる.したがって、外導 体先端の位置を揃える($L_o=0$ mm にする)こと が重要である.

4. あとがき

本研究では、Sパラメータ法で使用される SRC 製ジグを取り上げて、より正確に測定するための ジグを製作するときのポイントを調べた.その結 果として、(1)放射素子を取り付けるための内導 体の長さは 2 mm 程度とする、(2)2 本の SRC の間隔はできるだけ小さくする、(3)外導体の先 端から 2 mm 程度の範囲をハンダ付けする、(4) 2 本の外導体の先端をずらさないことが大切であ ることを明らかにした.

参考文献

- 1) 佐藤和夫,西川訓利,鈴木徳祥,小川明,"人体近傍に 置かれた携帯無線機用アンテナの特性解析,"信学論 (B-II), vol.J79-B-II, no.11, pp.892-900, Nov. 1996.
- 2) 笹森崇行,加藤貴之,澤谷邦男,"人体の影響が小さい VHF 帯無線端末用ヘリカルアンテナ,"信学論(B), vol. J84-B, no.5, pp.951-953, May 2001.
- 43) 梶谷篤史, 金ヨンホ, 森下久, 小柳芳雄, "給電部を考 慮した携帯端末用 U 字型折返しダイポールアンテナの 特性,"信学論(B), vol.J92-B, no.3, pp.567-575, March 2009.
- 4) R. Meys, and F. Janssens, "Measuring the impedance of balanced antennas by an S-parameter method," IEEE Antennas Propagat. Mag., vol. 40, no. 6, pp. 62–65, Dec. 1998.
- 5) K.D. Palmer, and M.W. van Rooyen, "Simple broadband measurements of balanced loads using a network analyzer," IEEE Trans. Instrum. Meas., vol.55, no.1, pp. 266-272 Feb. 2006.
- 6)藤本勝大, 浅沼健一, 若林孝行, 前田忠彦, "スケール モデルを用いたインピーダンスと放射効率の測定実 験, "信学技報, A・P2008-83, pp.49-54, April 2010.
- 7) 笹森崇行, 吉沢隆之, 戸花照雄, 礒田陽次, "Sパラ メータ法による平衡アンテナの入力インピーダンス測 定,"信学技報, A・P2010-4, pp.15-18, Sept. 2008.
- 8) S. Konya, T. Sasamori, T. Tobana, and Y. Isota, "Wideband impedance measurement of balanced antenna using the S-parameter method," Proc. Asia-Pacific Microwave Conf. 2011, 7-WE2P-30, pp. 717-720, Melbourne, Australia, Dec. 2011.
- 9) 石井望, アンテナ基本測定法, pp.132-135, コロナ社, 東京, 2011.
- 10) 笹森崇行, 中道勇太, 戸花照雄, 礒田陽次, "マイクロ ストリップ線路による S パラメータ法用ジグの検討," 信学技報, A・P2012-4, pp.27-32, April 2012.
- T. Fukasawa, T. Yanagi, H. Miyashita, and Y. Konishi, "Extended S-parameter method including radiation pattern measurements of an antenna," IEEE Trans. Antennas Propagat., vol. 60, no. 12, pp. 5645–5653, Dec. 2012.
- 12) Z. Duan, Y.-X. Guo, R.-F. Xue, M. Je, D.-L. Kwong, "Differentially Fed Dual-Band Implantable Antenna for Biomedical Applications," IEEE Trans. Antennas Propagat., vol.60, no.12, pp.5587–5595, Dec. 2012.
- Y. Shafiq, J.S. Gibson, H. Kim, C.P. Ambulo, T.H. Ware, S.V. Georgakopoulos, "A Reusable Battery-Free RFID Temperature Sensor," IEEE Trans. Antennas Propagat., vol.67, no.10, pp.6612–6626, Oct. 2019.
- 14) 笹森崇行, 戸花照雄, 礒田陽次, "S パラメータ法を用

いた入力インピーダンスの広帯域測定, "信学論(B), vol. J96-B, no.9, pp.1067-1075, Sept. 2013.

15) 須藤邦明, 松井章典, "Sパラメータ法と SOL 法を組 み合わせた平面バランの Sパラメータ測定,"信学論 (B), vol.J100-B, no.2, pp.59-66, Feb. 2017.

 "OpenFDTD - オープンソース FDTD 法シミュレー ター,"http://emoss.starfree.jp/OpenFDTD/index.html, 参照 2023 年 7 月.