HOKUGA 北海学園学術情報リポジトリ

学校法人北海学園 北 海 学 園 大 学 北 海 斎 科 大 学

	Normality of Some Singular Integral Type
タイトル	Operators on the Hilbert Space Dedicated to
	Professor Tsuyoshi Ando on his 90th birthday
著者	NAKAZI, Takahiko; YAMAMOTO, Takanori
引用	北海学園大学工学部研究報告(51): 15-20
発行日	2024-01-12

Normality of Some Singular Integral Type Operators on the Hilbert Space Dedicated to Professor Tsuyoshi Ando on his 90th birthday

Takahiko NAKAZI*) and Takanori YAMAMOTO**)

Abstract

We study the normality of $\Phi P + \Psi Q$ when P is selfadjoint and Q = I - P. These results are applied to three special cases.

§1. Introduction

Let *L* be a Hilbert space and *H* a closed subspace of *L*. Let *P* denote the orthogonal projection from *L* to *H* and *I* denote the identity operator on *L*. Suppose $L = H \oplus K$ and Q = I - P where *H* = *PL*, *K* = *QL*, and *B*(*L*) denotes the set of all bounded linear operators on *L*.

An operator X in $\mathcal{B}(L)$ is called a normal operator when $X^*X - XX^* = 0$. For Φ and Ψ in $\mathcal{B}(L)$, $S_{\Phi,\Psi} = \Phi P + \Psi Q$ is called a singular integral type operator. In this paper, we are interested in when $S_{\Phi,\Psi}$ is a normal operator. In order to study it, we need two kinds of operators. The first ones are $T_{\Phi} = P\Phi P$ and $\tilde{T}_{\Phi} = Q\Phi Q$. The second ones are $H_{\Phi} = Q\Phi P$ and $\tilde{H}_{\Phi} = P\Phi Q$. Then $T_{\Phi}^* = T_{\Phi^*}$, $\tilde{T}_{\Phi}^* = \tilde{T}_{\Phi^*}$ and $H_{\Phi}^* = \tilde{H}_{\Phi^*}$. It is clear that $PS_{\Phi,\Psi}P = T_{\Phi}$, $QS_{\Phi,\Psi}Q = \tilde{T}_{\Psi}$, $QS_{\Phi,\Psi}P = H_{\Phi}$ and $PS_{\Phi,\Psi}Q = \tilde{H}_{\Psi}$.

§ 2. Necessary and sufficient conditions

In this section, we give a necessary and sufficient condition for normal $S_{\Phi,\Psi}$. As a result, we study normal $S_{\Phi,\Psi}$ when $\Phi - \lambda \Psi = cI$ where λ , $c \in \mathbb{C}$ and $|\lambda| = 1$.

Lemma 2–1. Let Φ and Ψ be in B(L). Then

$$\begin{split} S_{\Phi,\Psi}^* & S_{\Phi,\Psi} - S_{\Phi,\Psi} S_{\Phi,\Psi}^* = \\ & \begin{bmatrix} (T_{\Phi^*\Phi} - T_{\Phi\Phi^*}) + (\tilde{H}_{\Phi}H_{\Phi^*} - \tilde{H}_{\Psi}H_{\Psi^*}) & (\tilde{H}_{\Phi^*\Psi} - \tilde{H}_{\Psi\Phi^*}) + (\tilde{H}_{\Psi}\tilde{T}_{(\Phi-\Psi)^*} - T_{\Phi-\Psi}\tilde{H}_{\Phi^*}] \\ & (H_{\Psi^*\Phi} - H_{\Phi\Psi^*}) + (\tilde{T}_{\Phi-\Psi}H_{\Psi^*} - H_{\Phi}T_{(\Phi-\Psi)^*}) & (\tilde{T}_{\Psi^*\Psi} - \tilde{T}_{\Psi\Psi^*}) + (H_{\Psi}\tilde{H}_{\Psi^*} - H_{\Phi}\tilde{H}_{\Phi^*}) \end{bmatrix} \end{split}$$

Theorem 2–1. Let Φ and Ψ be in B(L). Then $S_{\Phi,\Psi}$ is normal if and only if

- (1) $T_{\Phi^*\Phi} = T_{\Phi\Phi^*}, \ \tilde{T}_{\Psi^*\Psi} = \tilde{T}_{\Psi\Psi^*} \text{ and } H_{\Psi^*\Phi} = H_{\Phi\Psi^*},$
- (2) $\tilde{H}_{\Phi}H_{\Phi^*} = \tilde{H}_{\Psi}H_{\Psi^*}$ and $H_{\Phi}\tilde{H}_{\Phi^*} = H_{\Psi}\tilde{H}_{\Psi^*}$,

^{*)} Professor Emeritus, Hokkaido University

^{**)} Department of Architecture and Building Engineering, Faculty of Engineering, Hokkai–Gakuen University

(3) $T_{\Phi-\Psi}H_{\Psi^*} = H_{\Phi}T_{(\Phi-\Psi)^*}.$

Corollary 2–1. Suppose Φ and Ψ are normal with $\Psi^* \Phi = \Phi \Psi^*$. Then $S_{\Phi,\Psi}$ is normal if and only if

- (1) $\tilde{H}_{\Phi}H_{\Phi^*} = \tilde{H}_{\Psi}H_{\Psi^*}$ and $H_{\Phi}\tilde{H}_{\Phi^*} = H_{\Psi}\tilde{H}_{\Psi^*}$,
- (2) $T_{\Phi-\Psi}H_{\Psi^*} = H_{\Phi}T_{(\Phi-\Psi)^*}.$

Corollary 2–2. Let $\Phi - \lambda \Psi = cI$ and λ , $c \in \mathbb{C}$ with $|\lambda| = 1$. Then $S_{\Phi,\Psi}$ is normal if and only if

- (1) $T_{\Phi^*\Phi} = T_{\Phi\Phi^*}, \ \tilde{T}_{\Phi^*\Phi} = \tilde{T}_{\Phi\Phi^*} \text{ and } H_{\Phi^*\Phi} = H_{\Phi\Phi^*}$
- (2) $\overline{c}H_{\Phi} = (1 \overline{\lambda}) (T_{\Phi}H_{\Phi^*} + H_{\Phi\Phi^*}).$

Corollary 2–3. Let $\Phi - \Psi = cI$ and $c \in \mathbb{C}$. Then $S_{\Phi,\Psi}$ is normal if and only if

- (1) $T_{\Phi^*\Phi} = T_{\Phi\Phi^*}, \ \tilde{T}_{\Phi^*\Phi} = \tilde{T}_{\Phi\Phi^*} \text{ and } H_{\Phi^*\Phi} = H_{\Phi\Phi^*}$
- (2) $\overline{c}H_{\Phi} = 0$

Now we will give necessary and sufficient conditions for selfadjoint $S_{\Phi,\Psi}$ and nonnegative $S_{\Phi,\Psi}$. These are easy to show.

Theorem 2–2. Let Φ and Ψ be in B(L). Then $S_{\Phi,\Psi}$ is selfadjoint if and only if $T_{\Phi-\Phi^*} = \tilde{T}_{\Psi-\Psi^*} = 0$ and $H_{\Phi-\Psi^*} = 0$.

Theorem 2–3. Let Φ and Ψ be in B(L). Then $S_{\Phi,\Psi}$ is nonnegative if and only if

- (1) $T_{\Phi} \ge 0$ and $\tilde{T}_{\Psi} \ge 0$, and $H_{\Phi-\Psi^*} = 0$.
- (2) $|\langle H_{\Phi}f, g \rangle|^2 \leq ||T_{\Phi}f|| ||\tilde{T}_{\Psi}g|| \ (f \in H, g \in K).$

§ 3. Two sufficient conditions

In this section two typical sufficient conditions are givn. Suppose Φ , ΨF are in B(L), and a, b and λ are in B(L). We assume $\Phi \neq \Psi$.

Theorem 3–1. Suppose $\Phi = aI + F + \frac{a-b}{\overline{a}-\overline{b}}F^*$ and $\Psi = bI + F + \frac{a-b}{\overline{a}-\overline{b}}F^*$. If $FH \subset H$

then $S_{\Phi,\Psi}$ is normal.

Theorem 3-2. Suppose $\Phi = \lambda aF + b$ and $\Psi = aF + b$ where λ , a and b are in \mathbb{C} with $|\lambda| = 1$ and $\lambda \neq 1$, and F is a unitary operator. Then $S_{\Phi,\Psi}$ is normal.

Theorem 3–3. If $\Phi = \Phi^*$, $\Psi = \Psi^*$ and $\Phi - \Psi = cI$ for some c in \mathbb{C} then $S_{\Phi,\Psi}$ is selfadjoint. **Theorem 3–4.** If $\Phi \ge 0$, $\Psi \ge 0$ and $\Phi - \Psi = cI$ for some c in \mathbb{C} then $S_{\Phi,\Psi}$ is nonnegative.

§ 4. Necessary conditions

In this section few typical necessary conditions are given. Suppose Φ , Ψ , f, G and g are elements in B(L), and a, b, c and λ are in \mathbb{C} .

Theorem 4–1. Let $\Phi - \lambda \Psi = cI$ and $|\lambda| = 1$. If $S_{\Phi,\Psi}$ is normal then $(\Phi^* \Phi - \Phi \Phi^*) H \subset K$ and

 $\Gamma H \subseteq H$ where $\Gamma = (\lambda - 1)\Psi\Psi^* + c\Psi^* - \lambda \overline{c}\Psi$.

Corollary 4–1. Let $\lambda = 1$. If $S_{\Phi,\Psi}$ is normal, then $(\Phi^*\Phi - \Phi\Phi^*) H \subset K$ and $(c\Phi^* - \overline{c}\Phi) H \subset H$. **Corollary 4–2.** Let $\lambda \neq 1$. If $S_{\Phi,\Psi}$ is normal, then $(\Phi^*\Phi - \Phi\Phi^*) H \subset K$ and $(GG^*) H \subset H$.

where

$$\Phi = \lambda G + \frac{c}{1-\lambda} I \text{ and } \Psi = G + \frac{c}{1-\lambda} I.$$

Theorem 4–2. If $S_{\Phi,\Psi}$ is selfadjoint then $(\Phi - \Phi^*) H \subset L$, $(\Psi - \Psi^*) H \subset L$ and $(\Phi - \Psi^*) H \subset H$.

Theorem 4–3. Suppose $S_{\phi,\Psi}$ is nonnegative. Then the following hold.

- (1) $(\Phi \Phi^*) H \subset L, (\Psi \Psi^*) H \subset L \text{ and } (\Phi \Psi^*) H \subset H.$
- (2) $T_{\Phi} \geq 0$ and $T_{\Psi} \geq 0$
- (3) $|\langle (\Phi \Psi^*) f, g \rangle|^2 \leq ||T_{\Phi} f|| ||\tilde{T}_{\Psi}g|| \ (f \in H, g \in L).$

§ 5. Special case I

Let A be a uniform algera on a compact Hausdorff space X. Let m be a representing measure on X for a nonzero complex homomorphism τ on A. The abstract Hardy space H^p is the closure of A in L^p for $1 \le p < \infty$ and H^{∞} is defined by $H^2 \cap L^{\infty}$. We assume that $H^{\infty} = \{F \in L^{\infty} : FH^2 \subset H^2\}$ = $\{F \in L^{\infty} : \overline{F}K^2 \subset K^2\}$ where $K^2 = L^2 \ominus H^2$. Then $L^2 = H^2 \oplus K^2$. Put $H_0^2 = \{F \in H^2 : \int Fdm = 0\}$. For ϕ and ϕ in L^{∞} , $\Phi = M_{\phi}$ and $\Psi = M_{\phi}$. We will write $S_{\phi,\Psi} = S_{\phi,\phi}$.

Theorem 5–1. Let $\phi - \lambda \psi = c$ where λ , $c \in \mathbb{C}$ and $|\lambda| = 1$. If $S_{\phi,\phi}$ is normal then $(\lambda - 1)|\psi|^2 + c\overline{\psi} - \lambda \overline{c}\psi$ is constant.

Corollary 5–1. If $\lambda = 1$ then $c\overline{\phi} - \overline{c}\phi$ is real constant.

Corollary 5–2. If $\lambda \neq 1$ then $S_{\phi,\phi}$ is normal if and only if

$$\phi = \lambda aF + b$$
 and $\psi = aF + b$

where a, $b \in \mathbb{C}, F \in L^{\circ}$ and $b = \frac{c}{1-\lambda}$, |F| = 1

Theorem 5–2. $S_{\phi,\phi}$ is selfadjoint if and only if $\phi = \overline{\phi}$, $\psi = \overline{\psi}$ and $\phi - \psi = c$ for some c in \mathbb{C} .

Theorem 5–3. Suppose $|H^2|$ is dense in $|L^2|$. Then $S_{\phi,\phi}$ is nonnegative if and only if $\phi \ge 0$, $\phi \ge 0$ and $\phi - \phi = c$ for some constant c.

§ 6. Special case II

Let q be an inner function, that is, q is a function in H^{∞} and |q| = 1 a.e. Let $H = H^2 \ominus qH^2$, $K = qH^2 \oplus (L^2 \ominus H^2)$.

For ϕ in L^{∞} , $\Phi = M_{\phi}$, $T_{\Phi} = T_{\phi}$ and $S_{\Phi,\Psi} = S_{\phi,\phi}$ where $\Psi = M_{\phi}$ and ϕ in L^{∞} .

Theorem 6–1. Let $\phi - \lambda \phi = c$ where $\lambda, c \in \mathbb{C}$ and $|\lambda| = 1$. If $S_{\phi,\phi}$ is normal then $\gamma (H^2 \ominus qH^2)$

 $\subset H^2 \ominus qH^2 \text{ where } \gamma = (\lambda - 1) |\psi|^2 + c\overline{\psi} - \lambda \overline{c}\psi. \text{ If } \int q \, dm = 0 \text{ then } \gamma \text{ is constant.}$

Corollary 6–1. If $\lambda = 1$ and $S_{\phi,\phi}$ is normal then $(c\overline{\phi} - \overline{c}\phi)$ $(H^2 \ominus qH^2) \subset H^2 \ominus qH^2$.

If $\int q dm = 0$ then $c\overline{\phi} - \overline{c}\phi$ is real constant.

Corollary 6–2. If $\lambda \neq 1$ and $S_{\phi,\phi}$ is normal then

$$\phi = \lambda G + b$$
 and $\phi = G + b$

where $b = c / (1 - \lambda)$ and $|G|^2 (H^2 \ominus qH^2) \subseteq H^2 \ominus qH^2$. If $\int q dm = 0$ then G = aF where |F| = 1 and $a \in \mathbb{C}$.

Theorem 6–2. Suppose $\int q dm = 0$. Let ϕ and ψ be in L^{∞} . Then $S_{\phi,\phi}$ is selfadjoint if and only if $\phi - \overline{\phi}$ belongs to $qH^2 + \overline{qH^2}$, $\psi = \overline{\psi}$ and $(\phi - \psi) (H^2 \ominus qH^2) \subseteq H^2 \ominus qH^2$.

Theorem 6-3. Let $|H^2|$ be dense in $|L^2|$. Suppose that $\int q dm = 0$ and if $g(H^2 \ominus qH^2) \subset H^2$ $\ominus qH^2$ then g is constant when g is in H° . Then $S_{\phi,\phi}$ is nonnegative if and only if $\phi = \overline{\phi}, \phi \ge 0, \phi$ $-\phi$ is constant c, and for f in $H^2 \ominus qH^2$ and $g \in qH^2 + K^2$

$$\int (\psi + c) \mid f \mid^2 dm \ge 0$$

and

$$\int \psi f \,\overline{g} \, dm \Big|^2 \leq \int (\psi + c) |f|^2 \, dm \int \psi |g|^2 \, dm.$$

§ 7. Special case III

Let $L = H^2$, $H = H^2 \ominus qH^2$ (or $H = qH^2$) and $K = qH^2$ (or $K = H^2 \ominus qH^2$, respectively). We assume $\Phi = T_{\phi}$ and $\Psi = T_{\phi}$ for ϕ and ψ in L^{∞} . We write $S_{\phi,\phi} = S_{\phi,\Psi}$.

Theorem 7–1. Suppose $H = H^2 \ominus qH^2$ and $K = qH^2$ or $H = qH^2$ and $K = H^2 \ominus qH^2$. Then $S_{\phi,\phi}$ is normal if and only if

- (1) $(T^*_{\phi}T_{\phi} T_{\phi}T^*_{\phi}) H \subseteq K, (T^*_{\phi}T_{\phi} T_{\phi}T^*_{\phi}) L \subseteq H \text{ and } (T^*_{\phi}T_{\phi} T_{\phi}T^*_{\phi}) H \subseteq H$
- (2) $(T_{\phi}P_{H}T_{\phi}^{*} T_{\phi}P_{H}T_{\phi}^{*}) H \subseteq K$ and $(T_{\phi}P_{H}T_{\phi}^{*} T_{\phi}P_{H}T_{\phi}^{*}) K \subseteq H$.
- (3) $(T_{\phi-\phi}P_KT_{\phi}^* T_{\phi}P_HT_{\phi-\phi}^*) H \subseteq H.$

Corollary 7–1. Let $\phi - \lambda \psi = c$ when λ , $c \in \mathbb{C}$ and $|\lambda| = 1$. Suppose $H = H^2 \odot qH^2$ and $K = qH^2$ or $H = qH^2$ and $K = H^2 \odot qH^2$. Then $S_{\phi,\phi}$ is normal if and only if

- $(1) \quad T_{\phi}^* T_{\phi} = T_{\phi} T_{\phi}^*$
- (2) $\overline{c} T_{\phi} H \subset H$
- (3) (2 $(\lambda 1)$ $T_{\phi} T_{\phi}^* \lambda \overline{c} T_{\phi}$) $H \subseteq H$.

Corollary 7–2. If $\lambda = 1$ and $S_{\phi,\phi}$ is normal then $T_{\gamma}(qH^2) \subset qH^2$ where $\gamma = c\overline{\psi} - \overline{c}\psi$. If A is a weak*-Dirichlet algebra then $i\gamma$ is real constant and T_{ϕ} is normal.

Theorem 7–2. Suppose $\int q dm = 0$. Let ϕ and ψ be in L^{∞} .

(1) Let $H = H^2 \ominus qH^2$ and $K = qH^2$. Then $S_{\phi,\phi}$ is selfadjoint if and only if $T_{(\phi-\overline{\phi})} (H^2 \ominus qH^2)$ $\subset qH^2, T_{(\phi-\overline{\phi})} (qH^2) \subset H^2 \ominus qH^2$ and $T_{(\phi-\overline{\phi})} (H^2 \ominus qH^2) \subset H^2 \ominus qH^2$.

(2) Let $H = qH^2$ and $K = H^2 \ominus qH^2$. Then $S_{\phi,\phi}$ is selfadjoint if and only if $T_{(\phi-\overline{\phi})}qH^2 \subset H^2$ $\ominus qH^2$ and $T_{(\phi-\overline{\phi})}qH^2 \subset qH^2$.

- (3) If $T_{(\phi-\overline{\phi})}(H^2 \ominus qH^2) \subseteq qH^2$ then $\phi \overline{\phi}$ belongs to $qH^2 + \overline{qH^2} + N_c^2$.
- (4) If $T_{\phi-\overline{\phi}} qH^2 \subseteq H^2 \ominus qH^2$ then $\psi \overline{\psi}$ belongs to N_c^2

Corollary 7–3. Let A be a weak*-Dirichlet algebra. Suppose $\int q dm = 0$.

(1) Let $H = H^2 \ominus qH^2$ and $K = qH^2$. Then $S_{\phi,\phi}$ is selfadjoint if and only if $\phi - \overline{\phi}$ belongs to $qH^2 + \overline{qH^2}, \phi = \overline{\phi}$ and $\phi - \overline{\phi}$ is constant.

(2) Let $H = qH^2$ and $K = H^2 \ominus qH^2$. Then $S_{\phi,\phi}$ is selfadjoint if and only if $\phi = \overline{\phi}, \phi - \overline{\psi}$ belongs to $qH^2 + \overline{qH^2}$ and $\phi - \overline{\psi}$ is constant.

Theorem 7–3. Suppose $H = H^2 \ominus qH^2$ and $K = qH^2$ or $H = qH^2$ and $K = H^2 \ominus qH^2$. Then $S_{\phi,\phi}$ is nonnegative if and only if for f in H and q in K, $\int (T_{\phi}f) \overline{f} dm \ge 0$, $\int (T_{\phi}g) \overline{g} dm \ge 0$ and $\left| \int (T_{\phi}f) \overline{g} dm \right|^2 \le \int (T_{\phi}f) \overline{f} dm \int (T_{\phi}g) \overline{g} dm$.

Reference

References

- [1] C.C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103(1988), 809-812.
- [2] I. Gohberg and N. Krupnik, One-dimensional linear singular integral equations, Vol.1, Birkhäuser, Basel, 1992.
- [3] C. Gu, Algebraic properties of Cauchy singular integral operators on the unit circle, Taiwanese J. Math. 20 (2016), 161–189.
- [4] C. Gu, I.S. Hwang, D. Kang and W.Y. Lee, Normal singular Cauchy integral operators with operator-valued symbols, J. Math. Anal. Appl. 447(2017), 289–308.
- [5] I.S. Hwang and W.Y. Lee, Hyponormal Toeplitz operators with rational symbols, J. Oper. Theory 56 (2006), 47–58.
- [6] T. Ito and T.K. Wong, Subnormality and quasinormality of Toeplitz operators, Proc. A.M.S. 34

(1972), 157-164.

- [7] Y. Kim, E. Ko, J. Lee and T. Nakazi, Hyponormality of singular Cauchy integral operators with matrix-valued symbols, Hokkaido Mathematical Journal 482 (2019), 443–459.
- [8] R.A. Martínez-Avendaño and P. Rosenthal, An introduction to operators on the Hardy-Hilbert space, Springer, 2007.
- [9] T. Nakazi, Range inclusion of two same type concrete operators, Bulletin of the Korean Mathematical Society, Volume 53 Issue 6(2016), 1823–1830.
- [10] T. Nakazi, Hyponormal singular integral operators with Cauchy kernel on L^2 , .Commun. Korean Math. Soc. **33**(2018), No.3, pp.787–798.
- [11] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), 753–767.
- [12] T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy kernel on L^2 , Integral Equations Operator Theory **78** (2014), 233–248.
- [13] N.K. Nikolski, Operators, functions, and systems: An Easy Reading. Vol. 1, Amer. Math. Soc., Providence, 2002.
- [14] D. Sarason, Generalized interpolation in H° , Trans. Amer. Math. Soc. 127 (1967), 179–203.
- [15] T. Yamamoto, Majorization of singular integral operators with Cauchy kernel on L^2 , Ann. Funct. Anal. 5 (2014), 101–108.