HOKUGA 北海学園学術情報リポジトリ

学校法人北海学園 北 海 学 園 大 学 北 海 斎 科 大 学

タイトル	Iwanami Studies in Advanced Mathematics Hilbert Spaces of Analytic Functions (2) Takahiko Nakazi Professor (Emeritus) of Hokkaido University Mathematical Subject Classification (2000): Primary 46E22; Secondary 47A15, 47B35, 60G10 First published in 2009 in Japanese as Seisoku Kansu no nasu Hiruberuto kukan by Iwanami Shoten, Publishers, Tokyo.
著者	YAMAMOTO, Takanori
引用	北海学園大学学園論集(197): 29-34
発行日	2025-07-25

Iwanami Studies in Advanced Mathematics

Hilbert Spaces of Analytic Functions (2) Takahiko Nakazi

Professor (Emeritus) of Hokkaido University Mathematical Subject Classification (2000): Primary 46E22; Secondary 47A15, 47B35, 60G10 First published in 2009 in Japanese as Seisoku Kansu no nasu Hiruberuto kukan by Iwanami Shoten, Publishers, Tokyo.

Translated by Takanori YAMAMOTO

This paper is a translation of the above book from Chapter 1 Section 3 to Section 5.

Section 3 Normal Orthogonal Basis

A countable subset $\{e_n\}$ of a Hilbert space \mathcal{H} is called an orthonormal system of \mathcal{H} if it satisfies the condition $\langle e_n, e_m \rangle = \delta_{nm}$, where δ_{nm} is the Kronecker delta. When the smallest closed subspace containing the orthonormal system $\{e_n\}$ denoted as

 $[\{e_n\}] = \{\text{closure of all linear combinations of } \{e_n\}\}$

is equal to \mathcal{H} , then $\{e_n\}$ is called an orthonormal basis of \mathcal{H} .

Proposition I-1.3.1. Let $\{e_n\}$ be an orthonormal system of \mathcal{H} , and F be a closed subspace of \mathcal{H} generated by $\{e_n\}$. For any $g \in \mathcal{H}$, if

$$f = \sum_{n=1}^{\infty} \langle g, e_n \rangle e_n,$$

then $f \in F$ and f is the orthogonal projection of g onto F.

Proof Let $F_N = [e_1, e_2, \dots, e_N]$. For $g \in \mathcal{H}$, let

$$f_N = \sum_{n=1}^N \langle g, e_n \rangle e_n.$$

Then f_N is the orthogonal projection of g onto F_N . If we can show that $\operatorname{dist}(g, F_N) \to \operatorname{dist}(g, F)$ $(N \to \infty)$, then $||g - f_N|| \to \operatorname{dist}(g, F)$. Since $||f - f_N|| \to O(N \to \infty)$, it follows that $||g - f|| = \operatorname{dist}(g, F)$. By the proof of Theorem I-1.2.2, f is the orthogonal projection of g onto F.

We show that $\operatorname{dist}(g, F_N) \rightarrow \operatorname{dist}(g, F) = \delta$. For any N, $||g - f_N|| = \operatorname{dist}(g, F_N)$, Since $f_N \in F_N \subset F_{N+1} \subset F$, it follows that

$$||g-f_N|| \ge ||g-f_{N+1}|| \ge \delta$$

For any $\varepsilon > 0$, there exists $h \in F$ such that

$$\delta \! + \! \varepsilon \! > \! \| g \! - \! h \| \! \ge \! \delta \! .$$

For this h, there exists N_1 and $h' \in F_{N_1}$ such that $||h-h'|| < \varepsilon$. Since $\delta + 2\varepsilon > ||g-h'|| \ge \delta$, it follows that

$$\delta + 2\varepsilon > \operatorname{dist}(g, F_{N_1}) = ||g - f_{N_1}|| \ge \delta.$$

Therefore $\lim_{N\to\infty} \operatorname{dist}(g, F_N) = \operatorname{dist}(g, F)$. (end of proof)

Corollary I-1.3.2. (Bessel's inequality) If $\{e_n\}$ is an orthonormal system of \mathcal{H} , then

$$\sum_{n=1}^{\infty} |\langle g, e_n \rangle|^2 \le ||g||^2 \quad (g \in \mathcal{H})$$

The equality holds when $\{e_n\}$ is a basis.

Proof We use the same symbols as in Proposition I-1.3.1. Then $||f - f_N|| \rightarrow 0(N \rightarrow \infty)$ and $||f_N||^2 = \sum_{n=1}^N |\langle g, e_n \rangle|^2$. Since f is the orthogonal projection of g onto F, we have $||f|| \le ||g||$. Since $||f_N||^2$ is increasing, we have $||f_N||^2 \le ||g||^2$. If we set f = g, then the latter half follows. (End of proof)

Section 4 Bounded Linear Functionals

If \mathcal{H} is a Hilbert space and \mathcal{H}^* is the set of bounded linear functionals on \mathcal{H} , then \mathcal{H}^* is a normed vector space. For $g \in \mathcal{H}$, if

$$\phi_g(f) = \langle f, g \rangle \quad (f \in \mathcal{H})$$

then, by Cauchy-Schwarz inequality, $\phi_g \in \mathcal{H}^*$. In this case, $\|\phi_g\| = \|g\|$. For $\alpha, \beta \in \mathbb{C}$ and $g, h \in \mathcal{H}$,

$$\phi_{\alpha g+\beta h} = \overline{\alpha} \phi_g + \overline{\beta} \phi_h.$$

The following Theorem I-1.4.1 is called the Riesz representation theorem, and shows that \mathcal{H} is identified with \mathcal{H}^* .

Theorem I-1.4.1. (Riesz representation theorem) For any bounded linear functional ϕ on \mathcal{H} ,

there exists a unique vector $g \in \mathcal{H}$ such that

$$\phi(f) = \langle f, g \rangle \quad (f \in \mathcal{H}).$$

Proof Let Ker $\phi = \{f \in \mathcal{H}: \phi(f) = 0\}$. Since ϕ is bounded, Ker ϕ is a closed subspace of \mathcal{H} . If Ker $\phi = \mathcal{H}$, then $\phi(f) = \langle f, 0 \rangle (f \in \mathcal{H})$, so the theorem is true for this case. If Ker $\phi \neq \mathcal{H}$, then there exists h of norm 1 such that $h \perp \text{Ker } \phi$. Since $h \notin \text{Ker } \phi$, $\phi(h) \neq 0$. For $f \in \mathcal{H}$, $f - (\phi(f)/\phi(h))h \in \text{Ker } \phi$. Therefore, for $f \in \mathcal{H}$,

$$\begin{split} \phi(f) &= \phi(f) \langle h, h \rangle = \left\langle \frac{\phi(f)}{\phi(h)} h, \overline{\phi(h)} h \right\rangle \\ &= \left\langle f, \overline{\phi(h)} h \right\rangle + \left\langle \frac{\phi(f)}{\phi(h)} h - f, \overline{\phi(h)} h \right\rangle \\ &= \left\langle f, \overline{\phi(h)} h \right\rangle. \end{split}$$

Therefore, if $g = \overline{\phi(h)}h$, then $\phi(f) = \langle f, g \rangle$.

If $\langle f, g_1 \rangle = \langle f, g_2 \rangle$ for all $f \in \mathcal{H}$, then in particular, for $f = g_1 - g_2$, $\langle g_1 - g_2, g_1 - g_2 \rangle = 0$, so $g_1 = g_2$, which proves uniqueness. (End of proof)

Theorem I-1.4.2. The unit ball of \mathcal{H} is weakly compact.

Proof By Theorem I-1.4.1 and the remarks, $\mathcal{H}^* = \mathcal{H}$, so this is the result of Theorem II-1.1.9. (End of proof)

Corollary I-1.4.3. Let M be a closed subspace of \mathcal{H} and $\phi \in \mathcal{H}^*$. If ϕ is not zero on M, then there is a unique solution $F = F_M \in M$ to the extremal problem

$$\sup \{\operatorname{Re} \phi(f): f \in M, \|f\| \le 1\}$$

Proof If

$$\alpha = \sup \{ \operatorname{Re} \phi(f) : f \in M, \|f\| \le 1 \}$$

then there exists $\{f_n\} \subset M$ such that $||f_n|| \leq 1$ and $\operatorname{Re} \phi(f_n) \to \alpha$. By Theorem I-1.4.2, there exists a subsequence $\{f_n\}$ of $\{f_n\}$, and f_n converges to $F \in \mathcal{H}$, which is a weak topology. By Theorem II-1.1. 11, M is closed in the weak topology of \mathcal{H} , so $F \in M$ and $\operatorname{Re} \phi(F) = \alpha$.

We shall show that F is a unique solution. If G is another solution to this extremal problem,

then tF + (1-t)G also solves the same extremal problem for any $0 \le t \le 1$.

In this case, since ϕ is not zero, for any t

$$||tF+(1-t)G|| = 1 = ||tF|| + ||(1-t)G||$$

Therefore, $\langle tF, (1-t)G \rangle = ||tF|| \cdot ||(1-t)G||$.

By Lemma I-1.1.2, (1-t)G indicates a positive scalar multiple of tF, so G=F. (End of proof)

Theorem I-1.4.4. If \mathcal{H} is separable, then the unit ball of \mathcal{H} endowed with the weak topology is metrizable.

Proof Let \mathcal{H}_1 be the unit ball of \mathcal{H} , and $\{e_n\}$ be an orthonormal basis of \mathcal{H} . For $f, g \in \mathcal{H}_1$, if

$$d(f,g) = \sum_{j=1}^{\infty} 2^{-(j+1)} |\langle f - g, e_j \rangle|$$

then *d* is the distance of \mathcal{H}_1 . If $f_n \in \mathcal{H}_1$ weakly converges to $f \in \mathcal{H}_1$, then $d(f_n, f) \to 0$, since $\langle f_n - f, e_j \rangle \to 0$ and $|\langle f_n - f, e_j \rangle| \leq 2$, $d(f_n, f) \to 0$. Conversely, if $d(f_n, f) \to 0$, then $\langle f_n - f, e_j \rangle \to 0$. However, for any $x \in \mathcal{H}_1$, we can write $x = \sum_{j=1}^{\infty} \alpha_j e_j$ by Proposition I-1.3.1. Therefore, using $||f_n - f|| \leq 2$ and the Cauchy-Schwarz inequality (I-1.1.2),

$$|\langle f_n - f, x \rangle| \leq 2 \left\| x - \sum_{j=0}^{\ell} \alpha_j e_j \right\| + \left| \langle f_n - f, \sum_{j=0}^{\ell} \alpha_j e_j \rangle \right|.$$

This implies that $\langle f_n - f, x \rangle \rightarrow 0$. (End of proof)

Section 5 Bounded Linear Operator

Let \mathcal{H} and \mathcal{H} be Hilbert spaces, and T be a linear operator from \mathcal{H} to \mathcal{H} .

T is said to be bounded if there exists a positive constant γ such that

$$\|Tf\|_{\mathcal{H}} \leq \gamma \|f\|_{\mathcal{H}} \quad (f \in \mathcal{H}).$$

||T|| represents the lower bound of such γ .

The set of all bounded linear operators from \mathcal{H} to \mathcal{H} is written by $\mathcal{B}(\mathcal{H}, \mathcal{H})$. If $\mathcal{H}=\mathcal{H}$, then $\mathcal{B}(\mathcal{H})$ in short. It is well known that T is bounded if and only if T is continuous.

The set of all $\lambda \in \mathbb{C}$ for which $T - \lambda I$ is not invertible for $T \in \mathcal{B}(\mathcal{H})$ is denoted by $\sigma(T)$, where I is the identity operator on \mathcal{H} . $\sigma(T)$ is called the spectrum of T, and is known to be a compact set of \mathbb{C} that is not the empty set.

Lemma I-1.5.1. For any $g \in \mathcal{H}$, if there exists a bounded linear functional Φ_g on \mathcal{H} such that

$$\left|\Phi_{g}(f)\right| \leq \gamma \|f\|_{\mathcal{H}} \|g\|_{\mathcal{H}} \quad (f \in \mathcal{H})$$

and there exists a positive constant γ such that

$$\left|\Phi_{g}(f)\right| \leq \gamma \left\|f\right\|_{\mathcal{H}} \left\|g\right\|_{\mathcal{H}} \quad (f \in \mathcal{H})$$

then there exists a bounded linear operator S from $\mathcal H$ to $\mathcal H$ such that

$$\Phi_g(f) = \langle f, Sg \rangle_{\mathcal{H}} \quad (g \in \mathcal{H})$$

Proof By the Riesz representation theorem I-1.4.1, there exists a unique $h \in \mathcal{H}$ such that $\Phi_g(f) = \langle f, h \rangle_{\mathcal{H}}$, so let Sg = h. In this case, it is clear that $||S|| \leq \gamma$. (End of proof)

Proposition I-1.5.2. For $T \in \mathcal{B}(\mathcal{H}, \mathcal{H})$, there exists a unique $S \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ such that

$$\langle Tf, g \rangle_{\mathcal{H}} = \langle f, Sg \rangle_{\mathcal{H}} \quad (f \in \mathcal{H}, g \in \mathcal{H}).$$

In this case, we write $S = T^*$ and call it the conjugate operator of T.

Proof For $g \in \mathcal{H}$,

$$\Phi_g(f) = \langle Tf, g \rangle_{\mathcal{H}} \quad (f \in \mathcal{H})$$

By the Cauchy-Schwarz inequality, Φ_g satisfies Lemma I-1.5.1, so there exists a bounded linear operator *S* from \mathcal{H} to \mathcal{H} such that

$$\langle Tf, g \rangle_{\mathcal{H}} = \Phi_g(f) = \langle f, Sg \rangle_{\mathcal{H}} \quad (f \in \mathcal{H}, g \in \mathcal{H}).$$

We shall show the uniqueness. If there exists another $S' \in \mathcal{B}(\mathcal{H}, \mathcal{H})$ such that $\langle Tf, g \rangle_{\mathcal{H}} = \langle f, S'g \rangle_{\mathcal{H}} (f \in \mathcal{H}, g \in \mathcal{H})$, then $\langle f, Sg - S'g \rangle_{\mathcal{H}} = 0 (f \in \mathcal{H})$. Therefore, $(S - S')g = 0 (g \in \mathcal{H})$, so S = S'. (End of proof)

Corollary I-1.5.3. If $T \in \mathcal{B}(\mathcal{H})$, then $\mathcal{H} = \text{Ker } T^* \oplus [\text{Ran}T]$, where Ker $T^* = \{f \in \mathcal{H}: T^*f = 0\}$ and $\text{Ran}T = T\mathcal{H}$.

Proof This is clear from the above proposition.

Theorem I-1.5.4. (Schur's theorem) Let $T = (a_{ij})$ be the representation matrix of the linear operator T with respect to an orthonormal basis on ℓ^2 . If there exist $0 < \gamma < \infty$ and

 $0 < h_j < \infty (1 \le j < \infty)$ such that

$$\sum_{j=1}^{\infty} |a_{ij}| h_j \leq \gamma h_i \quad (i \geq 1),$$
$$\sum_{i=1}^{\infty} |a_{ij}| h_i \leq \gamma h_j \quad (j \geq 1),$$

then T is bounded on ℓ^2 and $||T|| \leq \gamma$.

Proof Let $(f_i) \in \ell^2$ and $1 \le n \le \infty$. Let fix $1 \le i \le \infty$. Then

$$\begin{split} \left| \sum_{j=1}^{n} a_{ij} f_{j} \right| &\leq \sum_{j=1}^{n} |a_{ij}| h_{j}^{1/2} h_{j}^{-1/2} |f_{j}| \\ &\leq \left(\sum_{j=1}^{n} |a_{ij}| h_{j} \right)^{1/2} \left(\sum_{j=1}^{n} |a_{ij}| h_{j}^{-1} |f_{j}|^{2} \right)^{1/2} \\ &\leq \sqrt{\gamma} h_{i}^{1/2} \left(\sum_{j=1}^{n} |a_{ij}| h_{j}^{-1} |f_{j}|^{2} \right)^{1/2}. \end{split}$$

Therefore, from the assumption,

$$\begin{split} \sum_{i=1}^{n} \left| \sum_{j=1}^{n} a_{ij} f_{j} \right|^{2} &\leq \gamma \sum_{i=1}^{n} \left(h_{i} \sum_{j=1}^{n} |a_{ij}| h_{j}^{-1} |f_{j}|^{2} \right) \\ &= \gamma \sum_{j=1}^{n} h_{j}^{-1} |f_{j}|^{2} \left(\sum_{i=1}^{n} |a_{ij}| h_{i} \right) \\ &\leq \gamma \sum_{j=1}^{n} h_{j}^{-1} |f_{j}|^{2} \times \gamma h_{j} = \gamma^{2} \sum_{j=1}^{n} |f_{j}|^{2}. \end{split}$$

(End of Proof)