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This paper is a translation of the above book from Chapter 1 Section 3 to Section 5.
Section 3 Normal Orthogonal Basis

A countable subset {e.} of a Hilbert space J is called an orthonormal system of J if it satisfies
the condition {ex, em) = 0um, where Sum is the Kronecker delta. When the smallest closed subspace

containing the orthonormal system {e,} denoted as
[{ext]={closure of all linear combinations of {e.}}
is equal to J6, then {ex} is called an orthonormal basis of .
Proposition I-1.3.1. Let {e.} be an orthonormal system of ¢, and F be a closed subspace of /£
generated by {es). For any gEX, if
f= §1<g, enlen,

then fEF and f is the orthogonal projection of g onto £

Proof Let Fn=le, ez, -, en]. For g€, let
N
= §1<g, en>€n-

Then fn is the orthogonal projection of ¢ onto Fu. If we can show that dist(g, Fn)—dist(g, F)
(IN—00), then [g— fvl|—dist(g, F). Since ||f— fv]|—0(N—00), it follows that |lg— f|=dist(g, ). By
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the proof of Theorem 1-1.2.2, f is the orthogonal projection of g onto F.
We show that dist(g, Fn)—dist(g, F)=0. For any N, |g— fnxl=dist(g, F), Since fnEFnC
Fnai CF, it follows that

lg—rull=llg— ful =6
For any >0, there exists Z#EF such that
S+e>llg—h|=o.

For this %, there exists N1 and # € Fy, such that [|k—%'|<e. Since §+2e>|g—1'|=5, it follows
that

8+2e>distlg, Fa)=|lg— fml|=0.

Therefore limy—w dist(g, Fn)=dist(g, F). (end of proof)

Corollary 1-1.3.2. (Bessel's inequality) If {ex} is an orthonormal system of J, then
g, el <lol” <)
The equality holds when {e,} is a basis.
Proof We use the same symbols as in Proposition I-1.3.1. Then |f— fnll—00V—) and

Il =2 _|(g, enl’. Since f is the orthogonal projection of g onto F, we have |/ <|gl. Since | fxl’ is

increasing, we have |/’ <lgl’. If we set f=g, then the latter half follows. (End of proof)
Section 4 Bounded Linear Functionals

If ¥ is a Hilbert space and J* is the set of bounded linear functionals on J, then #* is a

normed vector space. For gEJ6, if
(N)=f, 90 (FEH)
then, by Cauchy-Schwarz inequality, ¢,=76*. In this case, ||¢d|=llgll. For @, BEC and g, hE¥,
Bagrsn=aPg+ Lbn.
The following Theorem I-1.4.1 is called the Riesz representation theorem, and shows that J is
identified with J6*,
Theorem I-1.4.1. (Riesz representation theorem) For any bounded linear functional ¢ on J€,
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there exists a unique vector g&J€ such that
p(={f, 9 ([FEK.

Proof Let Ker ¢={fE5: (f)=0}. Since ¢ is bounded, Ker ¢ is a closed subspace of J. If
Ker ¢=J6, then ¢(f)=(f, 0)(f €J6), so the theorem is true for this case. If Ker ¢#J6, then there
exists / of norm 1 such that 2 L Ker ¢. Since h&Ker ¢, ¢(h)*#0. For f €, f—(d(f)/p(h)hEKer .
Therefore, for fE5,

$1=00 ) =50 )

)
b 0+ 1,0

<

S S

(h)

SN

h
()h).

©-

:<f

Therefore, if g=@(R)h, then ¢(f)=(7, g).
If (£, g)={F, go) for all fEX, then in particular, for f=gi—gs (G1—gz 1—3g20=0, s0 G1=05,

which proves uniqueness. (End of proof)
Theorem I-1.4.2. The unit ball of /¢ is weakly compact.

Proof By Theorem I-1.4.1 and the remarks, J6*=J¢, so this is the result of Theorem II-1.1.9.
(End of proof)

Corollary 1-1.4.3. Let M be a closed subspace of # and ¢<=H* If ¢ is not zero on M, then
there is a unique solution /'=FyEM to the extremal problem

sup {Re ¢(f): fE€EM, |A1<1}

Proof If
a=sup {Re ¢(f): FEM, |IFI<1}

then there exists {f.} CM such that |fx|<1 and Re ¢(f»)—a. By Theorem I-1.4.2, there exists a
subsequence {f»,} of {4}, and f», converges to FEJ, which is a weak topology. By Theorem II-1.1.
11, M is closed in the weak topology of /¢, so FEM and Re ¢(F)=a.

We shall show that F' is a unique solution. If G is another solution to this extremal problem,
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then tF+(1—¢)G also solves the same extremal problem for any 0<¢<1.

In this case, since ¢ is not zero, for any ¢
ItF+1—0GI=1=|F+I01—G]
Therefore, (¢, 1 —8)G)=tF|- |(1—)Gl.

By Lemma I-1.1.2, (1—#)G indicates a positive scalar multiple of tF, so G=F. (End of proof)

Theorem I-1.4.4. If 7€ is separable, then the unit ball of 6 endowed with the weak topology is

metrizable.
Proof Let 1 be the unit ball of #, and {e.} be an orthonormal basis of . For f, gE5,, if

d(f, g):]éZ’”“’I(f—g, el

then d is the distance of .. If fuE7, weakly converges to fEX1, then d(f, f)—0, since
(fa—F,ei—0 and |(fu—F, e <2, d(fn, /)—0. Conversely, if d(fn, f)—0, then (fu—f,e)—0.
However, for any xEJ6:, we can write x=2,_,aje; by Proposition I-1.3.1. Therefore, using

|f»— fII<2 and the Cauchy-Schwarz inequality (I-1.1.2),

|<fn_fy x>|£2

+‘<fn—f, ]é)a/je;>

Y
x— Dlaje;
i=0

This implies that (f»— 7, x)—0. (End of proof)
Section 5 Bounded Linear Operator

Let /€ and & be Hilbert spaces, and T be a linear operator from /€ to 4.

T is said to be bounded if there exists a positive constant y such that

1AL <7IA,  (FEH).

|7 represents the lower bound of such 7.

The set of all bounded linear operators from J to A is written by B¢, K). If X=X, then B)
in short. It is well known that 7" is bounded if and only if 7" is continuous.

The set of all A€C for which 7—AI is not invertible for 7€) is denoted by o(7), where I
is the identity operator on #. o(7T) is called the spectrum of 7, and is known to be a compact set of

C that is not the empty set.

Lemma I-1.5.1. For any gEX, if there exists a bounded linear functional @, on J¢ such that
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@, N=<7A gl (FEI0)
and there exists a positive constant y such that

@ A<AALN,  (FEH)
then there exists a bounded linear operator S from /4 to J6 such that

O, ()=(f,Sg), GEH)
Proof By the Riesz representation theorem I-1.4.1, there exists a unique 2EJ¢ such that O,(f)=
(f, h),, so let Sg=h. In this case, it is clear that ||S|<7. (End of proof)
Proposition |-1.5.2. For TE€3(J¢, ¥), there exists a unique SEABW, J) such that
(Tf,9),=f,Sq),, (fEK gEH).

In this case, we write S=7"* and call it the conjugate operator of 7.

Proof For g&X,
Q,N=(T1, 9, (FEH)

By the Cauchy-Schwarz inequality, @, satisfies Lemma I-1.5.1, so there exists a bounded linear

operator S from A to J¢ such that
(Tf, 9),=0,f)={f,Sq),, (FEI, gEX.

We shall show the uniqueness. If there exists another S'€B(X,J) such that (Tf,¢),=
(£,Sg), (fEH, gEX), then (f,Sg—S'g),=0(f EJ). Therefore, (S—S)g=0gEXK), so S=S". (End
of proof)

Corollary 1-1.5.3. If T€8(¥), then }=Ker T*®[RanT], where Ker T*={f&): T*f=0}
and RanT=T.

Proof This is clear from the above proposition.

Theorem I-1.5.4. (Schur’s theorem) Let 7'=(a;) be the representation matrix of the linear

operator 7' with respect to an orthonormal basis on #¢% If there exist 0<y<co and
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0<h;j<oo(l<j<o0) such that

Sladhs<rhi (21,

§|aif|hfé vhi (G=1),

then T is bounded on #% and |7 <7.

Proof Let (f;))€¢% and 1<n<oo, Let fix 1<i< oo, Then

n n
‘Eldﬁf j §]§|aif|hjl/2hfl/2|f i

n 172/ n S\172

<(Satns) (Sl 15
j=1 J=1

1/2

</7ht (Sl F)

Therefore, from the assumption,

n

2

i=1

n 2 n n
2laifi| <2 (h,z |aii|h/'_l|fi|2)
j=1 i=1 j=1
—r S St
<y 2hi A X k=2

(End of Proof)
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