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This paper is a translation of the above book from Chapter 1 Section 3 to Section 5.

Section 3 Normal Orthogonal Basis

A countable subset 􎝀􎝐 of a Hilbert space 􂄋 is called an orthonormal system of 􂄋 if it satisfies

the condition 􎟀􀀬 􎟐􀀽, where  is the Kronecker delta. When the smallest closed subspace

containing the orthonormal system 􎝀􎝐 denoted as

􎜠􎝀􎝐􎜰􀀽􎝀􀁣􀁬􀁯􀁳􀁵􀁲􀁥 􀁯􀁦 􀁡􀁬􀁬 􀁬􀁩􀁮􀁥􀁡􀁲 􀁣􀁯􀁭􀁢􀁩􀁮􀁡􀁴􀁩􀁯􀁮􀁳 􀁯􀁦 􎝀􎝐􎝐

is equal to 􂄋, then 􎝀􎝐 is called an orthonormal basis of 􂄋.

Proposition I-1.3.1. Let 􎝀􎝐 be an orthonormal system of 􂄋, and  be a closed subspace of 􂄋

generated by 􎝀􎝐. For any 􂈈􂄋, if

􀀽 􂈑
􎨽􎨱

􎸞

􎟀􀀬 􎟐􀀬

then 􂈈 and  is the orthogonal projection of  onto  .

Proof Let 􀀽􎜠􎨱􀀬 􎨲􀀬 􂋯􀀬 􎜰. For 􂈈􂄋, let

􀀽 􂈑
􎨽􎨱



􎟀􀀬 􎟐

Then  is the orthogonal projection of  onto . If we can show that 􀁤􀁩􀁳􀁴􎜀􀀬 􎜐􂆒􀁤􀁩􀁳􀁴􎜀􀀬 􎜐

􎜀􂆒􂈞􎜐, then 􎞐􂈒􎞐􂆒􀁤􀁩􀁳􀁴􎜀􀀬 􎜐. Since 􎞐􂈒􎞐􂆒􀀰􎜀􂆒􂈞􎜐, it follows that 􎞐􂈒􎞐􀀽􀁤􀁩􀁳􀁴􎜀􀀬 􎜐. By
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the proof of Theorem I-1.2.2,  is the orthogonal projection of  onto  .

We show that 􀁤􀁩􀁳􀁴􎜀􀀬 􎜐􂆒􀁤􀁩􀁳􀁴􎜀􀀬 􎜐􀀽. For any  , 􎞐􂈒􎞐􀀽􀁤􀁩􀁳􀁴􎜀􀀬 􎜐, Since 􂈈􂊂

􎨫􎨱􂊂 , it follows that

􎞐􂈒􎞐􂉥􎞐􂈒􎨫􎨱􎞐􂉥

For any 􀀾􀀰, there exists 􂈈 such that

􀀫􀀾􎞐􂈒􎞐􂉥

For this , there exists 􎨱 and  􎴃􂈈􏀱 such that 􎞐􂈒 􎴃􎞐􀀼. Since 􀀫􀀲􀀾􎞐􂈒 􎴃􎞐􂉥􀎴, it follows

that

􀀫􀀲􀀾􀁤􀁩􀁳􀁴􎜀􀀬 􏀱􎜐􀀽􎞐􂈒􏀱􎞐􂉥

Therefore 􀁬􀁩􀁭􎴅􎸞 􀁤􀁩􀁳􀁴􎜀􀀬 􎜐􀀽􀁤􀁩􀁳􀁴􎜀􀀬 􎜐. (end of proof)

Corollary I-1.3.2. (Besselʼs inequality) If 􎝀􎝐 is an orthonormal system of 􂄋, then

􂈑
􎨽􎨱

􎸞

􎞀􎟀􀀬 􎟐􎞀
􎨲
􂉤􎞐􎞐􎨲 􎜀􂈈􂄋􎜐

The equality holds when 􎝀􎝐 is a basis.

Proof We use the same symbols as in Proposition I-1. 3. 1. Then 􎞐􂈒􎞐􂆒􀀰􎜀􂆒􂈞􎜐 and

􎞐􎞐􎨲
􀀽􂈑

􎨽􎨱􎞀􎟀􀀬 􎟐􎞀
􎨲. Since  is the orthogonal projection of  onto  , we have 􎞐􎞐􂉤􎞐􎞐. Since 􎞐􎞐􎨲 is

increasing, we have 􎞐􎞐􎨲
􂉤􎞐􎞐􎨲. If we set 􀀽, then the latter half follows. (End of proof)

Section 4 Bounded Linear Functionals

If 􂄋 is a Hilbert space and 􂄋􎨪 is the set of bounded linear functionals on 􂄋, then 􂄋􎨪 is a

normed vector space. For 􂈈􂄋, if

􎜀 􎜐􀀽􎟀 􀀬 􎟐 􎜀􂈈􂄋􎜐

then, by Cauchy-Schwarz inequality, 􂈈􂄋􎨪. In this case, 􎞐􎞐􀀽􎞐􎞐. For 􀀬 􂈈􂄂 and 􀀬 􂈈􂄋,

􎨫􀀽􀀫

The following Theorem I-1.4.1 is called the Riesz representation theorem, and shows that 􂄋 is

identified with 􂄋􎨪.

Theorem I-1.4.1. (Riesz representation theorem) For any bounded linear functional  on 􂄋,
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there exists a unique vector 􂈈􂄋 such that

􎜀 􎜐􀀽􎟀 􀀬 􎟐 􎜀􂈈􂄋􎜐

Proof Let 􀁋􀁥􀁲 􀀽􀁻􂈈􂄋􀀺 􎜀 􎜐􀀽􀀰􀁽. Since  is bounded, 􀁋􀁥􀁲  is a closed subspace of 􂄋. If

􀁋􀁥􀁲 􀀽􂄋, then 􎜀 􎜐􀀽􎟀 􀀬 􀀰􎟐􎜀􂈈􂄋􎜐, so the theorem is true for this case. If 􀁋􀁥􀁲 􂉠􂄋, then there

exists  of norm 1 such that 􂊥􀁋􀁥􀁲 . Since 􂈉􀁋􀁥􀁲 , 􎜀􎜐􂉠􀀰. For 􂈈􂄋, 􂈒􎜀􎜀 􎜐􀀯􎜀􎜐􎜐􂈈􀁋􀁥􀁲 .

Therefore, for 􂈈􂄋,

􎜀 􎜐􀀽􎜀 􎜐􎟀􀀬 􎟐􀀽􎟂􎜀 􎜐
􎜀􎜐􀀬 􎜀􎜐􎟒

􀀽􎟀 􀀬 􎜀􎜐􎟐􀀫􎟂􎜀 􎜐
􎜀􎜐􂈒 􀀬 􎜀􎜐􎟒

􀀽􎟀 􀀬 􎜀􎜐􎟐

Therefore, if 􀀽􎜀􎜐, then 􎜀 􎜐􀀽􎟀 􀀬 􎟐.

If 􎟀 􀀬 􎨱􎟐􀀽􎟀 􀀬 􎨲􎟐 for all 􂈈􂄋, then in particular, for 􀀽􎨱􂈒􎨲, 􎟀􎨱􂈒􎨲􀀬 􎨱􂈒􎨲􎟐􀀽􀀰, so 􎨱􀀽􎨲,

which proves uniqueness. (End of proof)

Theorem I-1.4.2. The unit ball of 􂄋 is weakly compact.

Proof By Theorem I-1.4.1 and the remarks, 􂄋􎨪􀀽􂄋, so this is the result of Theorem II-1.1.9.

(End of proof)

Corollary I-1.4.3. Let  be a closed subspace of 􂄋 and 􂈈􂄋􎨪. If  is not zero on  , then

there is a unique solution 􀀽􂈈 to the extremal problem

􀁳􀁵􀁰 􎝀􀁒􀁥 􎜀 􎜐􀀺 􂈈 􀀬 􎞐􎞐􂉤􀀱􎝐

Proof If

􀀽􀁳􀁵􀁰 􎝀􀁒􀁥 􎜀 􎜐􀀺 􂈈 􀀬 􎞐􎞐􂉤􀀱􎝐

then there exists 􎝀􎝐􂊂 such that 􎞐􎞐􂉤􀀱 and 􀁒􀁥 􎜀􎜐􂆒. By Theorem I-1.4.2, there exists a

subsequence 􎝀􎝐 of 􎝀􎝐, and  converges to 􂈈􂄋, which is a weak topology. By Theorem II-1.1.

11,  is closed in the weak topology of 􂄋, so 􂈈 and 􀁒􀁥 􎜀􎜐􀀽.

We shall show that  is a unique solution. If  is another solution to this extremal problem,
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then 􀀫􎜀􀀱􂈒􎜐 also solves the same extremal problem for any 􀀰􀀼􀀼􀀱.

In this case, since  is not zero, for any

􎞐􀀫􎜀􀀱􂈒􎜐􎞐􀀽􀀱􀀽􎞐􎞐􀀫􎞐􎜀􀀱􂈒􎜐􎞐

Therefore, 􎟀 􀀬 􎜀􀀱􂈒􎜐􎟐􀀽􎞐􎞐􂋅􎞐􎜀􀀱􂈒􎜐􎞐.

By Lemma I-1.1.2, 􎜀􀀱􂈒􎜐 indicates a positive scalar multiple of  , so 􀀽 . (End of proof)

Theorem I-1.4.4. If 􂄋 is separable, then the unit ball of 􂄋 endowed with the weak topology is

metrizable.

Proof Let 􂄋 􎨱 be the unit ball of 􂄋, and 􎝀􎝐 be an orthonormal basis of 􂄋. For  􀀬 􂈈􂄋 􎨱, if

􎜀 􀀬 􎜐􀀽􂈑
􎨽􎨱

􎸞

􀀲􎸒􎜀􎨫􎨱􎜐􎞀􎟀􂈒􀀬 􎟐􎞀

then  is the distance of 􂄋 􎨱. If 􂈈􂄋 􎨱 weakly converges to 􂈈􂄋 􎨱, then 􎜀􀀬  􎜐􂆒􀀰, since

􎟀􂈒 􀀬 􎟐􂆒􀀰 and 􎞀􎟀􂈒 􀀬 􎟐􎞀􂉤􀀲, 􎜀􀀬  􎜐􂆒􀀰. Conversely, if 􎜀􀀬  􎜐􂆒􀀰, then 􎟀􂈒 􀀬 􎟐􂆒􀀰.

However, for any 􂈈􂄋 􎨱, we can write 􀀽􂈑􎸞
􎨽􎨱 by Proposition I-1. 3. 1. Therefore, using

􎞐􂈒􎞐􂉤􀀲 and the Cauchy-Schwarz inequality (I-1.1.2),

􎞀􎟀􂈒 􀀬 􎟐􎞀􂉤􀀲􎞑􂈒􂈑
􎨽􎨰



􎞑􀀫􎞁􎟁􂈒 􀀬 􂈑
􎨽􎨰



􎟑􎞁
This implies that 􎟀􂈒 􀀬 􎟐􂆒􀀰. (End of proof)

Section 5 Bounded Linear Operator

Let 􂄋 and 􎅋 be Hilbert spaces, and  be a linear operator from 􂄋 to 􎅋 .

 is said to be bounded if there exists a positive constant  such that

􎞐􎞐􎅋􂉤􎞐􎞐􂄋 􎜀􂈈􂄋􎜐

􎞐􎞐 represents the lower bound of such .

The set of all bounded linear operators from 􂄋 to 􎅋 is written by 􂄬􎜀􂄋􀀬 􎅋􎜐. If 􂄋􀀽􎅋 , then 􂄬􎜀􂄋􎜐

in short. It is well known that  is bounded if and only if  is continuous.

The set of all 􂈈􂄂 for which 􂈒 is not invertible for 􂈈􂄬􎜀􂄋􎜐 is denoted by  􎜀􎜐, where

is the identity operator on 􂄋.  􎜀􎜐 is called the spectrum of  , and is known to be a compact set of

􂄂 that is not the empty set.

Lemma I-1.5.1. For any 􂈈􎅋 , if there exists a bounded linear functional 􀎦 on 􂄋 such that
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􎞀􀎦􎜀 􎜐􎞀􂉤􎞐􎞐􂄋􎞐􎞐􎅋 􎜀􂈈􂄋􎜐

and there exists a positive constant  such that

􎞀􀎦􎜀 􎜐􎞀􂉤􎞐􎞐􂄋􎞐􎞐􎅋 􎜀􂈈􂄋􎜐

then there exists a bounded linear operator  from 􎅋 to 􂄋 such that

􀎦􎜀 􎜐􀀽􎟀 􀀬 􎟐􂄋 􎜀􂈈􎅋􎜐

Proof By the Riesz representation theorem I-1.4.1, there exists a unique 􂈈􂄋 such that 􀎦􎜀 􎜐􀀽

􎟀 􀀬 􎟐􂄋, so let 􀀽. In this case, it is clear that 􎞐􎞐􂉤. (End of proof)

Proposition I-1.5.2. For 􂈈􂄬􎜀􂄋􀀬 􎅋􎜐, there exists a unique 􂈈􂄬􎜀􎅋􀀬 􂄋􎜐 such that

􎟀 􀀬 􎟐􎅋􀀽􎟀 􀀬 􎟐􂄋 􎜀􂈈􂄋􀀬 􂈈􎅋􎜐.

In this case, we write 􀀽 􎨪 and call it the conjugate operator of  .

Proof For 􂈈􎅋 ,

􀎦􎜀 􎜐􀀽􎟀 􀀬 􎟐􎅋 􎜀􂈈􂄋􎜐

By the Cauchy-Schwarz inequality, 􀎦 satisfies Lemma I-1.5.1, so there exists a bounded linear

operator  from 􎅋 to 􂄋 such that

􎟀 􀀬 􎟐􎅋􀀽􀎦􎜀 􎜐􀀽􎟀 􀀬 􎟐􂄋 􎜀􂈈􂄋􀀬 􂈈􎅋􎜐

We shall show the uniqueness. If there exists another  􎴃􂈈􂄬􎜀􎅋􀀬 􂄋􎜐 such that 􎟀 􀀬 􎟐􎅋􀀽

􎟀 􀀬  􎴃􎟐􂄋 􎜀􂈈􂄋􀀬 􂈈􎅋􎜐, then 􎟀 􀀬 􂈒 􎴃􎟐􂄋􀀽􀀰􎜀􂈈􂄋􎜐. Therefore, 􎜀􂈒 􎴃􎜐􀀽􀀰􎜀􂈈􎅋􎜐, so 􀀽 􎴃. (End

of proof)

Corollary I-1.5.3. If 􂈈􂄬􎜀􂄋􎜐, then 􂄋􀀽􀁋􀁥􀁲  􎨪􂊕􎜠􀁒􀁡􀁮􎜰, where 􀁋􀁥􀁲  􎨪􀀽􎝀􂈈􂄋􀀺  􎨪􀀽􀀰􎝐

and 􀁒􀁡􀁮􀀽􂄋.

Proof This is clear from the above proposition.

Theorem I-1.5.4. (Schurʼs theorem) Let 􀀽􎜀􎜐 be the representation matrix of the linear

operator  with respect to an orthonormal basis on  􎨲. If there exist 􀀰􀀼􀀼􂈞 and
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􀀰􀀼􀀼􂈞􎜀􀀱􂉤􀀼􂈞􎜐 such that

􂈑
􎨽􎨱

􎸞

􎞀􎞀􂉤 􎜀􂉥􀀱􎜐􀀬

􂈑
􎨽􎨱

􎸞

􎞀􎞀􂉤 􎜀􂉥􀀱􎜐􀀬

then  is bounded on  􎨲 and 􎞐􎞐􂉤.

Proof Let 􎜀 􎜐􂈈 􎨲 and 􀀱􂉤􀀼􂈞. Let fix 􀀱􂉤􀀼􂈞. Then

􎞁􂈑􎨽􎨱



 􎞁􂉤􂈑
􎨽􎨱



􎞀􎞀
􎨱􎨯􎨲

􎸒􎨱􎨯􎨲􎞀 􎞀

􂉤􎜁􂈑􎨽􎨱



􎞀􎞀􎜑
􎨱􎨯􎨲

􎜁􂈑􎨽􎨱



􎞀􎞀
􎸒􎨱􎞀 􎞀

􎨲􎜑
􎨱􎨯􎨲

􂉤 
􎨱􎨯􎨲􎜁􂈑􎨽􎨱



􎞀􎞀
􎸒􎨱􎞀 􎞀

􎨲􎜑
􎨱􎨯􎨲



Therefore, from the assumption,

􂈑
􎨽􎨱



􎞁􂈑􎨽􎨱



 􎞁
􎨲

􂉤􂈑
􎨽􎨱



􎜁􂈑
􎨽􎨱



􎞀􎞀
􎸒􎨱􎞀 􎞀

􎨲􎜑
􀀽􂈑

􎨽􎨱




􎸒􎨱􎞀 􎞀

􎨲􎜁􂈑􎨽􎨱



􎞀􎞀􎜑
􂉤􂈑

􎨽􎨱




􎸒􎨱􎞀 􎞀

􎨲
􀃗􀀽 􎨲􂈑

􎨽􎨱



􎞀 􎞀
􎨲


(End of Proof)
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