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This paper is a translation of the above book from Chapter 1 Section 6 to Section 7.
Section 6 Compact Operators

Let #, / be two Hilbert spaces. The unit ball of # is denoted by #.. Then TEB, X) is a

compact operator if and only if the closure of 77 is compact in the norm topology of /.

Theorem 1.-1.6.1. Let T€8(J, ). Then the necessary and sufficient condition for 7" to be
compact is that f» weakly converges to 0 in J, ie, for any A€, limue (f4, 1), =0, then
im e | 772, =0.

Proof. We shall show that if 7 is compact and f» weakly converges to 0 in €, then
||Tfn||‘,{—>0(n—'00). If not, select a subsequence if necessary, then there exists an e such that
177l ,=e>0(n=1,2, ). By the Banach-Steinhaus theorem II-1.3.1, if f» weakly converges to 0,
then supy [/, <. Since T is compact, {7fx} is a subset of some norm compact set in /. Thus,
there is a subsequence {4} in 7€ such that {7} converges to gEX in norm. In particular, {7/}
weakly converges to g. Therefore g=0. It follows that |7l ,—0. This is a contradiction.

Conversely, suppose T is not compact. Then the closure of 77 in 4 is not norm-compact.
Thus, there is a {f»} CJ#: such that {fx} does not normally converge with any subsequence of
{Tf.). By the Alaoglu’s theorem 11.-1.1.9, J¢, is compact in weak topology, so there is a weakly
converging subsequence {fu}. If F;=f»(j=1,2, ---), then {F}} converges weakly, but 7F; does not

converge in norm. (End of proof)
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T is a finite rank operator if TEBJ, X) and T# is a finite dimensional subspace of /.

Proposition I-1.6.2.

(1) If T is a finite rank operator on /6, then there exists 0<7 <o such that
Tf:]§)<f, G Fi (fET)

where {G}_,CJ and {F)}_ ,C K.

(2) If T is a finite rank operator, then 7" is a compact operator.

n
J

Proof (1) Since 7'J6 is a finite-dimensional subspace of J, if {7} _, is its orthonormal basis, then
for any fEJL,

szjéa’i(f)ij a(IEC (1<j<n).

For any j, (Tf, Fj),=a;(f), but since T is bounded, a; is a bounded linear functional on J6. By
Riesz’s representation theorem (I-1.4.1), there exists G;EJ such that a;(f)={f, G)) ”
(2) By (1), if f; converges weakly to 0, then
2 & 2
“Tf; ||]{ :]§‘<ﬁy G]>7(’
Therefore, |7/, ,—0(f—o0). By Theorem I-1.6.1, T is compact. (End of proof)
Remark I-1.6.3. If T is compact, then it is known that 7" can be approximated by some finite

rank operator in operator norm. By Theorem II-1.3.3 and Proposition I-1.6.2 (2), the converse is also

true.
Section 7 Products and Square Roots of Positive Linear Operators
TEB(J) is said to be positive when
(Tf, /1=0 (FEX)

holds, and we write 7=0. If 7,S€8) and T—S=0, then we write 7=S. Even if
T,SEBH), S=0 and T=0, this does not necessarily mean that 7S=0. In this section, we will
show that if 7S=ST, then 7S>0. We will also use this to show that there is a unique square root
of T.

Lemma I-1.7.1. If T, SEABJ), T=0,5S=0 and 7S=ST, then 7S*=0.
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Proof Since 7S=ST and T =0, it follows that
(TS*f, f)=(TSf,Sf)=0
Therefore, 7.S?=0. (End of proof)

Lemma I-1.7.2. If SEB(J) and S=0, then for each % there exists Sx=>0 which is a polynomial

of S and can be written as S=>.,_, S£. Here the convergence is strong.

Proof Without loss of generality, we suppose that 0<S</. If we define {Sk}::1 as S1=S and
Se+1=Si{ —Sp), then Sk is a polynomial of S, and we have 0<S,<I(1<k<00). We shall show this
by induction. This holds when 2=1. If 0<S,</ holds for some k, then by Lemma I-1.7.1,
SHI—S)=0 and Sl —S»*=0, therefore

Sir1 =Sl —S)=SHI—=S)+SeI—S)*=0
and
[=Sp1=1=Sll—S)=I—S)+Si=0
and therefore 0<S,+1</. Then

31 57= 3 (Si—See) =S —Spe1 <S.

k=1 k=1

Hence,

SIS = 3Sf, S (ST, 1)
Therefore,

tim | 3252/ — /| = lim S22/ =0

and so X, SEf=Sf(f €7 holds. (End of proof)

Theorem 1-1.7.3. If T, SEBUK), T=0,5S=0 and 7S=ST, then TS=0.

Proof By Lemma I-1.7.1 and I-1.7.2. (End of proof)

Lemma I-1.7.4. If TER8(¥) and T=0, then
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(Tf, g <(TF, F{Tg.q) (f, gEX).

Proof If [ £, g]=(T¥, g), then [ £, gl satisfies (2) and (3) of the definition of the inner product I-1.1.
L. By the proof of Schwarz's inequality I-1.1.2, it follows that |[f, g*<Lf, 7llg, ¢). (End of proof)

Lemma 1-1.7.5. If T, €806 and 0< T, < T,+1<I, then there exists a positive TEB(}) such
that for any fE€, |Tnf — Tf|—0(n— ).

Proof We will show that || 75.f — Twfl—00z, m—0). Since ¥ is complete, this implies that
there exists g€ such that limu—- 7w/ =gs. Let 7f=gs. Then TEB), and the proof will be
finished. By Lemma 1-1.74, if »>m, then

|Tof = T

(Tu=Tw f,(Tu=Tw 1)’

(Tu=Tw)f, UT0—= T (To— T f, (Tn—T) f)
(Tu=Tw S, U Ta—=Tw) f, (Tu—Tw)f)
=((T=Twf, T T A1

IA

IA

Therefore

| Tf = T f I <UTu=Tw)f, £)

Since 0<(T,f, /)<IIfI’. it follows that there exists limpw(T%Wf, f). Therfore |Tuf— Twfl—
0(n, m—0). (End of proof)

Theorem I-1.7.6. Let T€8(J) and T>=0. Then there exists a unique positive SEB(J) such
that S?=7. Then ST=TS. We write S=T"%

Proof Without loss of generality, we suppose that 0<7'</. We shall prove the existence of S.

If we define {Si,_, as
So=0 and Sk+1:Sk+%(T_S§),

then Sx7'=TS: and
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holds. In fact,

[_Sk+1:%(]_Sk)2+%([_ T)

Since /=Sg+1 and
1
Sk+1_Sk:§{(]_Sk—1)+(]_Sk>}(sk_sk—l)y

by induction, we have Se+1=>S:. Here we use Lemma I-1.7.1. By Lemma I-1.7.5, there exists SEB()
such that lime |[|Se.f—SA=0(f€7). Then, since 7=S? and S;T=TSH0<k<c0), we have
ST=1TS.

We shall prove the uniqueness of S. Let 0< K <7 and K?=7T.Since KI=KKK=TK and S is
the limit of a polynomial in 7, we have KS=SK. Hence, (S+K)(S—K)=S?—K?*=0. From the first
half of the proof, there exist positive operators Rs, R« €B(#) such that Ré=S and Ri=K. Let
y=(S—K)x for zEJ6, then

IRsyl*+ | Rxyll®
=(S+K)y,y)
=(S+K)(S—K)z, y)=0.

This implies that Rsy=Rxy=0. Hence Sy=Réy=0 and Ky=R%y=0. Therefore

IS—K)xl’=((S—K)(S—K)z, x)
=((S—K)y, x)=0

This implies that S=K. (End of proof)

Corollary I-1.7.7. Let T€3B(), T>0 and m be a positive constant. Then |77} < if and only
if for any g€ and f=Tg, mllfI’=|f, g)l.

Proof If ml|fI°=1(7, g)l, then ml| Tgl*=|(Tyg, g). Let S=T"2 Then m(TSg, Sg)=|S¢ll* and S is

dense in J¢. Hence m(Th, h)=|h|*(hEJ). This implies that ||S™|</m. Therefore |77 <m. The

converse is obvious. (End of proof)
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