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This paper is a translation of the above book from Chapter 1 Section 6 to Section 7.

Section 6 Compact Operators

Let 􂄋, 􎅋 be two Hilbert spaces. The unit ball of 􂄋 is denoted by 􂄋 􎨱. Then �􂈈􂄬􎜀􂄋􀀬 􎅋􎜐 is a

compact operator if and only if the closure of �􂄋 􎨱 is compact in the norm topology of 􎅋 .

Theorem I.-1.6.1. Let �􂈈􂄬􎜀􂄋􀀬 􎅋􎜐. Then the necessary and sufficient condition for � to be

compact is that �� weakly converges to 0 in 􂄋, i. e., for any �􂈈􂄋, 􀁬􀁩􀁭�􎴅􎸞 􎟀��􀀬 �􎟐􂄋􀀽􀀰, then

􀁬􀁩􀁭�􎴅􎸞 􎞐���􎞐􎅋􀀽􀀰.

Proof. We shall show that if � is compact and �� weakly converges to 0 in 􂄋, then

􎞐���􎞐􎅋􂆒􀀰􎜀�􂆒􂈞􎜐. If not, select a subsequence if necessary, then there exists an � such that

􎞐���􎞐􎅋􂉥�􀀾􀀰 􎜀�􀀽􀀱􀀬 􀀲􀀬 􂋯􎜐. By the Banach-Steinhaus theorem II-1.3.1, if �� weakly converges to 0,

then 􀁳􀁵􀁰� 􎞐��􎞐􂄋􀀼􂈞. Since � is compact, 􎝀���􎝐 is a subset of some norm compact set in 􎅋 . Thus,

there is a subsequence 􎝀���􎝐 in 􂄋 such that 􎝀����􎝐 converges to �􂈈􎅋 in norm. In particular, 􎝀����􎝐

weakly converges to �. Therefore �􀀽􀀰. It follows that 􎞐����􎞐􎅋􂆒􀀰. This is a contradiction.

Conversely, suppose � is not compact. Then the closure of �􂄋 􎨱 in 􎅋 is not norm-compact.

Thus, there is a 􎝀��􎝐􂊂􂄋 􎨱 such that 􎝀��􎝐 does not normally converge with any subsequence of

􎝀���􎝐. By the Alaogluʼs theorem II.-1.1.9, 􂄋 􎨱 is compact in weak topology, so there is a weakly

converging subsequence 􎝀���􎝐. If ��􀀽���􎜀�􀀽􀀱􀀬 􀀲􀀬 􂋯􎜐, then 􎝀��􎝐 converges weakly, but ��� does not

converge in norm. (End of proof)
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� is a finite rank operator if �􂈈􂄬􎜀􂄋􀀬 􎅋􎜐 and �􂄋 is a finite dimensional subspace of 􎅋 .

Proposition I-1.6.2.

(1) If � is a finite rank operator on 􂄋, then there exists 􀀰􂉤�􀀼􂈞 such that

��􀀽􂈑
�􎨽􎨰

�

􎟀� 􀀬 ��􎟐􂄋�� 􎜀�􂈈􂄋􎜐

where 􎝀��􎝐�􎨽􎨱

�
􂊂􂄋 and 􎝀��􎝐�􎨽􎨱

�
􂊂􎅋 .

(2) If � is a finite rank operator, then � is a compact operator.

Proof (1) Since �􂄋 is a finite-dimensional subspace of 􎅋 , if 􎝀��􎝐�􎨽􎨱

� is its orthonormal basis, then

for any �􂈈􂄋,

��􀀽􂈑
�􎨽􎨱

�

��􎜀� 􎜐��􀀬 ��􎜀� 􎜐􂈈􂄂 􎜀􀀱􂉤�􂉤�􎜐�

For any �, 􎟀�� 􀀬 ��􎟐􎅋􀀽��􎜀� 􎜐, but since � is bounded, �� is a bounded linear functional on 􂄋. By

Rieszʼs representation theorem (I-1.4.1), there exists ��􂈈􂄋 such that ��􎜀� 􎜐􀀽􎟀� 􀀬 ��􎟐􂄋.

(2) By (1), if �� converges weakly to 0, then

􎞐��� 􎞐􎅋

􎨲
􀀽􂈑

�􎨽􎨱

�

􎞀􎟀��􀀬 ��􎟐􂄋􎞀
􎨲

Therefore, 􎞐��� 􎞐􎅋􂆒􀀰􎜀�􂆒􂈞􎜐. By Theorem I-1.6.1, � is compact. (End of proof)

Remark I-1.6.3. If � is compact, then it is known that � can be approximated by some finite

rank operator in operator norm. By Theorem II-1.3.3 and Proposition I-1.6.2 (2), the converse is also

true.

Section 7 Products and Square Roots of Positive Linear Operators

�􂈈􂄬􎜀􂄋􎜐 is said to be positive when

􎟀�� 􀀬 � 􎟐􂉥􀀰 􎜀�􂈈􂄋􎜐

holds, and we write �􂉥􀀰. If � 􀀬 �􂈈􂄬􎜀􂄋􎜐 and �􂈒�􂉥􀀰, then we write �􂉥�. Even if

� 􀀬 �􂈈􂄬􎜀􂄋􎜐􀀬 �􂉥􀀰 and �􂉥􀀰, this does not necessarily mean that ��􂉥􀀰. In this section, we will

show that if ��􀀽�� , then ��􂉥􀀰. We will also use this to show that there is a unique square root

of � .

Lemma I-1.7.1. If � 􀀬 �􂈈􂄬􎜀􂄋􎜐􀀬 �􂉥􀀰􀀬 �􂉥􀀰 and ��􀀽�� , then ��􎨲􂉥􀀰.
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Proof Since ��􀀽�� and �􂉥􀀰, it follows that

􎟀��􎨲� 􀀬 � 􎟐􀀽􎟀��� 􀀬 �� 􎟐􂉥􀀰

Therefore, ��􎨲􂉥􀀰. (End of proof)

Lemma I-1.7.2. If �􂈈􂄬􎜀􂄋􎜐 and �􂉥􀀰, then for each � there exists ��􂉥􀀰 which is a polynomial

of � and can be written as �􀀽􂈑􎸞
�􎨽􎨱 ��

􎨲. Here the convergence is strong.

Proof Without loss of generality, we suppose that 􀀰􂉤�􂉤� . If we define 􎝀��􎝐�􎨽􎨱

􎸞 as �􎨱􀀽� and

��􎨫􎨱􀀽��􎜀�􂈒��􎜐, then �� is a polynomial of �, and we have 􀀰􂉤��􂉤� 􎜀􀀱􂉤�􂉤􂈞􎜐. We shall show this

by induction. This holds when �􀀽􀀱. If 􀀰􂉤��􂉤� holds for some �, then by Lemma I-1. 7. 1,

��
􎨲􎜀�􂈒��􎜐􂉥􀀰 and ��􎜀�􂈒��􎜐

􎨲
􂉥􀀰, therefore

��􎨫􎨱􀀽��􎜀�􂈒��􎜐􀀽��
􎨲􎜀�􂈒��􎜐􀀫��􎜀�􂈒��􎜐

􎨲
􂉥􀀰

and

�􂈒��􎨫􎨱􀀽�􂈒��􎜀�􂈒��􎜐􀀽􎜀�􂈒��􎜐􀀫��
􎨲􂉥􀀰

and therefore 􀀰􂉤��􎨫􎨱􂉤� . Then

􂈑
�􎨽􎨱

�

��
􎨲􀀽􂈑

�􎨽􎨱

�

􎜀��􂈒��􎨫􎨱􎜐􀀽�􂈒��􎨫􎨱􂉤��

Hence,

􂈑
�􎨽􎨱

􎸞

􎞐���􎞐􎨲
􀀽􂈑

�􎨽􎨱

􎸞

􎟀��� 􀀬 ��� 􎟐􂉤􎟀�� 􀀬 � 􎟐�

Therefore,

􀁬􀁩􀁭
�􎴅􎸞 􎞑􂈑�􎨽􎨱

�

��
􎨲�􂈒��􎞑􀀽􀁬􀁩􀁭

�􎴅􎸞
􎞐��􎨫􎨱�􎞐􀀽􀀰

and so 􂈑􎸞
�􎨽􎨱 ��

􎨲�􀀽�� 􎜀�􂈈􂄋􎜐 holds. (End of proof)

Theorem I-1.7.3. If � 􀀬 �􂈈􂄬􎜀􂄋􎜐􀀬 �􂉥􀀰􀀬 �􂉥􀀰 and ��􀀽�� , then ��􂉥􀀰.

Proof By Lemma I-1.7.1 and I-1.7.2. (End of proof)

Lemma I-1.7.4. If �􂈈􂄬􎜀􂄋􎜐 and �􂉥􀀰, then
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􎞀􎟀�� 􀀬 �􎟐􎞀􎨲􂉤􎟀�� 􀀬 � 􎟐􎟀��􀀬 �􎟐 􎜀� 􀀬 �􂈈􂄋􎜐�

Proof If 􎜠� 􀀬 �􎜰􀀽􎟀�� 􀀬 �􎟐, then 􎜠� 􀀬 �􎜰 satisfies (2) and (3) of the definition of the inner product I-1.1.

1. By the proof of Schwarzʼs inequality I-1.1.2, it follows that 􎞀􎜠� 􀀬 �􎜰􎞀􎨲􂉤􎜠� 􀀬 � 􎜰􎜠�􀀬 �􎜰. (End of proof)

Lemma I-1.7.5. If ��􂈈􂄬􎜀􂄋􎜐 and 􀀰􂉤��􂉤��􎨫􎨱􂉤� , then there exists a positive �􂈈􂄬􎜀􂄋􎜐 such

that for any �􂈈􂄋, 􎞐���􂈒��􎞐􂆒􀀰􎜀�􂆒􂈞􎜐.

Proof We will show that 􎞐���􂈒���􎞐􂆒􀀰􎜀�􀀬 �􂆒􂈞􎜐. Since 􂄋 is complete, this implies that

there exists ��􂈈􂄋 such that 􀁬􀁩􀁭�􎴅􎸞 ���􀀽�� . Let ��􀀽�� . Then �􂈈􂄬􎜀􂄋􎜐, and the proof will be

finished. By Lemma I-1.7.4, if �􀀾�, then

􎞐���􂈒���􎞐􎨴

􀀽􎟀􎜀��􂈒��􎜐� 􀀬 􎜀��􂈒��􎜐� 􎟐􎨲

􂉤􎟀􎜀��􂈒��􎜐� 􀀬 � 􎟐􎟀􎜀��􂈒��􎜐􎜀��􂈒��􎜐� 􀀬 􎜀��􂈒��􎜐� 􎟐

􂉤􎟀􎜀��􂈒��􎜐� 􀀬 � 􎟐􎟀􎜀��􂈒��􎜐� 􀀬 􎜀��􂈒��􎜐� 􎟐

􀀽􎟀􎜀��􂈒��􎜐� 􀀬 � 􎟐􎞐􎜀��􂈒��􎜐�􎞐􎨲
�

Therefore

􎞐���􂈒���􎞐􎨲
􂉤􎟀􎜀��􂈒��􎜐� 􀀬 � 􎟐

􀀽􎟀��� 􀀬 � 􎟐􂈒􎟀��� 􀀬 � 􎟐�

Since 􀀰􂉤􎟀��� 􀀬 � 􎟐􂉤􎞐�􎞐􎨲, it follows that there exists 􀁬􀁩􀁭�􎴅􎸞 􎟀��� 􀀬 � 􎟐. Therfore 􎞐���􂈒���􎞐􂆒

􀀰􎜀�􀀬 �􂆒􂈞􎜐. (End of proof)

Theorem I-1.7.6. Let �􂈈􂄬􎜀􂄋􎜐 and �􂉥􀀰. Then there exists a unique positive �􂈈􂄬􎜀􂄋􎜐 such

that �􎨲􀀽� . Then ��􀀽��. We write �􀀽� 􎨱􎨯􎨲.

ProofWithout loss of generality, we suppose that 􀀰􂉤�􂉤� . We shall prove the existence of �.

If we define 􀁻��􀁽�􎨽􎨱

􎸞 as

�􎨰􀀽􀀰 􀁡􀁮􀁤 ��􎨫􎨱􀀽��􀀫
􀀱
􀀲 􎜀�􂈒��

􎨲􎜐􀀬

then ���􀀽��� and
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􀀰􀀽�􎨰􂉤�􎨱􂉤􂋯􂉤�

holds. In fact,

�􂈒��􎨫􎨱􀀽
􀀱
􀀲 􎜀�􂈒��􎜐

􎨲
􀀫

􀀱
􀀲 􎜀�􂈒�􎜐

Since �􂉥��􎨫􎨱 and

��􎨫􎨱􂈒��􀀽
􀀱
􀀲 􎝀􎜀�􂈒��􎸒􎨱􎜐􀀫􎜀�􂈒��􎜐􎝐􎜀��􂈒��􎸒􎨱􎜐􀀬

by induction, we have ��􎨫􎨱􂉥��. Here we use Lemma I-1.7.1. By Lemma I-1.7.5, there exists �􂈈􂄬􎜀􂄋􎜐

such that 􀁬􀁩􀁭�􎴅􎸞 􎞐���􂈒��􎞐􀀽􀀰􎜀�􂈈􂄋􎜐. Then, since �􀀽�􎨲 and ���􀀽���􎜀􀀰􂉤�􀀼􂈞􎜐, we have

��􀀽��.

We shall prove the uniqueness of �. Let 􀀰􂉤�􂉤� and � 􎨲􀀽� . Since ��􀀽���􀀽�� and � is

the limit of a polynomial in � , we have��􀀽�� . Hence, 􎜀�􀀫�􎜐􎜀�􂈒�􎜐􀀽�􎨲􂈒� 􎨲􀀽􀀰. From the first

half of the proof, there exist positive operators ��􀀬 ��􂈈􂄬􎜀􂄋􎜐 such that ��
􎨲􀀽� and ��

􎨲􀀽� . Let

�􀀽􎜀�􂈒�􎜐� for �􂈈􂄋, then

􎞐���􎞐
􎨲
􀀫􎞐���􎞐􎨲

􀀽􎟀􎜀�􀀫�􎜐�􀀬 �􎟐

􀀽􎟀􎜀�􀀫�􎜐􎜀�􂈒�􎜐�􀀬 �􎟐􀀽􀀰�

This implies that ���􀀽���􀀽􀀰. Hence ��􀀽��
􎨲�􀀽􀀰 and ��􀀽��

􎨲�􀀽􀀰. Therefore

􎞐􎜀�􂈒�􎜐�􎞐􎨲􀀽􎟀􎜀�􂈒�􎜐􎜀�􂈒�􎜐�􀀬 �􎟐

􀀽􎟀􎜀�􂈒�􎜐�􀀬 �􎟐􀀽􀀰

This implies that �􀀽� . (End of proof)

Corollary I-1.7.7. Let �􂈈􂄬􎜀􂄋􎜐, �􂉥􀀰 and� be a positive constant. Then 􎞐� 􎸒􎨱􎞐􂉤� if and only

if for any �􂈈􂄋 and �􀀽��, �􎞐�􎞐􎨲􂉥􎞀􎟀� 􀀬 �􎟐􎞀.

Proof If �􎞐�􎞐􎨲􂉥􎞀􎟀� 􀀬 �􎟐􎞀, then �􎞐��􎞐􎨲􂉥􎞀􎟀��􀀬 �􎟐􎞀. Let �􀀽� 􎨱􎨯􎨲. Then �􎟀���􀀬 ��􎟐􂉥􎞐��􎞐􎨲 and �􂄋 is

dense in 􂄋. Hence �􎟀��􀀬 �􎟐􂉥􎞐�􎞐􎨲􎜀�􂈈􂄋􎜐. This implies that 􎞐�􎸒􎨱􎞐􂉤� � . Therefore 􎞐� 􎸒􎨱􎞐􂉤�. The

converse is obvious. (End of proof)
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