
　

タイトル
UNIXファイルシステムの形式化における不変性の拡張

と一般化

著者 佐藤, 晴彦; SATO, Haruhiko

引用 北海学園大学工学部研究報告(53): 1-13

発行日 2026-01-09

UNIXファイルシステムの形式化における不変性の拡張と一般化

佐 藤 晴 彦

Extension and generalization of invariance properties in the formalization

of UNIX file−system

Haruhiko SATO

概 要

本論文では，WenzelによるUNIXファイルシステムの形式化において成り立つ性質につ
いての拡張と一般化を行った結果について報告する．新たに示した性質に基づき，形式化
における重要な結論の一つである特定の状況化での削除不能性の証明において，その一部
をより簡潔に記述できることを示す．

1 はじめに

形式検証はシステムの性質を数学的な手法を用いて厳密に調べる手法であり，OSのカーネ

ルやコンパイラのような高信頼性が求められるシステムの検証において特に重要である1）2）．シ

ステムを数学的に表現しその性質を証明する形式化の工程全体の正しさを保証するため，定理

証明支援系が活用されている．

Wenzelは，定理証明支援系Isabelle/HOLを用いてUNIXファイルシステムの形式化を行っ

た3）．この形式化では，応用例の一つとして自身で作成したディレクトリが削除不能となる特

殊な状態に到達し得ることを証明している．この状態は次の一連の操作によって生じる．

1．ユーザAが，誰でも書き込み可能なディレクトリD1を作成する

2．ユーザBが，所有者のみ書き込み可能なディレクトリD2をD1の直下に作成する

3．ユーザBが，何らかのファイルFをD2の直下に作成する

ここで，ユーザAは管理者権限を持たないものとする．ディレクトリを削除するにはそれが

北海学園大学准教授 工学部電子情報工学科
Assistant Professor, Department of Electronics and Information Engineering, Faculty of Engineering, Hokkai−Gakuen
University

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 1

空である必要があるため，AがD1を削除するにはBが所有するD2の削除が必要であり，またD

2を削除するにはD2を空にする必要がある．しかしながら，D2の要素であるFをAが削除する

ことはできないため，AはD2を削除することもできない．よってその親であるD1を削除する

こともできない．

一般的に，形式的な証明は通常の自然言語による証明よりも長くなる傾向にある．前述の削

除不能性に関する議論はそれほど複雑なものではないが，形式証明における上記の議論に対応

する命題の証明は50ステップを超える．このような通常の証明と形式証明とのギャップが生じ

る主な原因は，形式証明に要求される厳密さから生じる本質的な記述量の増加である．厳密さ

を損なわずに可読性を向上させるためには，通常の証明の簡潔さを支える暗黙的なステップを

形式証明においても表現できるよう定義や補題を拡充し，その上で証明の構造を整理しギャッ

プを小さくする試みが重要であると考えられる．

本論文では，前述の削除不能性に関する証明を再構成することを目的とした，Wenzelによ

る形式化（以降，原形式化）の拡張について報告する．＊1具体的には，木構造の参照・操作に

関する基本的な性質やシステムコール操作に対する木構造の不変性を表す性質を証明した上

で，それらを用いて削除不能性の証明の一部をより簡潔にするための，直感的に理解しやすい

補題を構成する．

2 ファイルシステムの形式化

本節では，原形式化における基本概念および証明された性質について，本研究で行う拡張に

関連のある部分について説明する．以降では，定理証明支援系Isabelleの用語や記法4）5）を用い

る．

2．1入れ子環境による木構造表現

ファイルシステムを表す木構造の表現には，Isabelle/HOLのNested_Environmentライブラリが

提供するenv型を用いる．env型は型変数'a，'b，'cおよび2種類の構築子Val，Envを持つも
のとして次のように定義される．

datatype（'a，'b，'c）env = Val 'a | Env 'b（'c ⇒（'a，'b，'c）env option）

型'aと'bは葉ノードと内部ノードが保持する値の型を，型'cは内部ノードに子を対応させる

枝の型を表す．Val aは'a型の値aを持つ葉ノードを表し，Env b esは'b型の値bと，枝を表
す'c型の値にその先の部分木を対応させる部分関数esからなる内部ノードを表す．Val型の値

＊1本文中で省略した証明の細部を含む，本研究で作成した形式化全体は https : //github.com/h−sato−
hgu/isabelle−unixfsで公開している．

佐 藤 晴 彦2

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 2

は子を持たないが，Env型の値が子を持たない場合もある．以降，子を持たないものも含め
Env型の値を内部ノードと呼ぶ．またVal型，Env型の両方を指すものとして，env型の値を
環境と呼ぶ．

ある木構造において，根から特定のノードに至るパス（経路）はそれを構成する枝のリスト

として表せる．よって（'a，'b，'c）env型の木構造におけるパスは'c list型で表される．
以降，パスpが別のパスp'の真の接頭辞であるとき，pはp'よりも上であるもしくはp'はpより

下であるという．あるパスpが別のパスp'より上であることは，リスト上の真の接頭辞関係を

表す組み込み関数strict_prefixを用いてstrict_prefix p p'と表せる．異なる2つのパ

スについて一方がもう一方の上という関係にないとき，これらは並列であるという．

lookup関数は環境eとパスxsに対し，eにおけるパスxsに存在する要素を返す．指定された
パスに要素が存在しない場合があるため，返り値の型をenv option型とし存在する場合は
Some fを，そうでない場合はNoneを返す．ある環境においてパスxsに要素が存在するとき，
xsを定義済みのパスと呼び，そうでない場合は未定義パスと呼ぶ．

update関数は環境eとパスxsおよびenv option型の値optに対し，optがSome e'の場合は

eにおいてパスxsに位置する要素をe'で置き換えた環境を返す．またoptがNoneの場合はパス
xsの要素を削除した環境を返す．ただしパスが空の場合すなわち根に対する更新において

は，optがNoneの場合は元の環境をそのまま返す．

2．2ファイルシステムに関する概念

ファイルシステムの構成要素であるプレーンファイルやディレクトリの名前を表す型を

nameとし，簡単のため自然数を表すnat型の別名として定義する．また同様にユーザIDを表

す型をuidとし，これもnat型の別名として定義する．uidの値が0であるユーザは管理者を
表す．ファイルやディレクトリへのアクセス権限を表す型permは，3種類の値を持つものと
して次のように定義される．

datatype perm = Readable | Writable | Executable

これらは順に読み込み可能，書き込み可能，実行可能を表すが，実行可能権限はこの形式化

では取り扱わない．

型attはファイルやディレクトリの属性を表し，所有者のユーザID ownerとその他のユー
ザに与えられるアクセス権限の集合othersの2つのフィールドからなるレコード型として次
のように定義される．

3UNIXファイルシステムの形式化における不変性の拡張と一般化

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 3

record att = owner : : uid
others : : perm set

ファイルシステム中の要素を表す型fileは，env型の型変数を次のように具体化したもの
として定義される．

type−synonym file ＝（att × string，att，name）env

以降，file型の値を単に要素と呼ぶ．要素のうちVal型の値はプレーンファイルを表し，
そのファイル属性を表すatt型の値とファイル内容を表すstring型の値を持つ．もう一方の
Env型の値はディレクトリを表し，そのディレクトリ属性を表す値を持つ．file型の値はそ
れを根とする木構造を表すため，file型を持つ変数の名前として以降rootを用いる．またこ
の木構造上のパスはname list型で表されるため，この型name listの別名として型pathを
定義し，またこの型を持つ変数の名前としても以降pathを用いる．
関数accessはアクセス権限を考慮した参照を行う関数であり，次のように定義される．

access root path uid perms =
（case lookup root path of

None ⇒ None
| Some file ⇒

if uid＝0 �uid = owner（attributes file）
�perms�others（attributes file）then Some file else None）

すなわち，指定した要素が存在しかつpermsに含まれるすべての種類のアクセス権限がユー
ザuidに認められる場合にのみその要素を返す．そのような場合とは，ユーザが管理者か所有
者のいずれかであるか，またはpermsの権限すべてがその他のユーザに認められるものである
場合である．アクセス権限の要求のない呼び出しaccess root path uid {}は単なる参照

lookup root pathと等価である．

2．3システムコールに関する概念

ファイルシステムを操作するためのシステムコールを表すoperation型は8種類の値を持
つものとして次のように定義される．

佐 藤 晴 彦4

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 4

datatype operation =
Read uid string path | Write uid string path | Chmod uid perms path

| Creat uid perms path | Unlink uid path
| Mkdir uid perms path | Rmdir uid path | Readdir uid "name set" path

以降，operation型の値を操作と呼ぶ．どの操作も，その操作の実行ユーザを表すuid
と，その操作対象の要素のパスを表すpathが付随する．操作xに付随するこれらのuid，
pathをそれぞれuid_of x，path_of xで表し，特にpath_of xを操作パスと呼ぶ．プレーン
ファイルの内容およびディレクトリのエントリ集合の読み込みを表すRead，Readdirは，そ
の結果を表すstringまたはname set型の値を持つ．またプレーンファイルへの書き込みを
表すWriteは，その書き込み内容を表すstring型の値を持つ．新規プレーンファイル・ディ
レクトリの作成を表すCreat，Mkdirおよび要素の属性を更新するChmodは，その作成・更新
される要素に設定されるアクセス権限を表すperms型の値を持つ．
これらの操作の意味は，述語transitionによって表される．transition r x r'は要素r

を根として操作xを行った結果が要素r'である関係を表し，略記としてr −−x−−> r'を用いる．

ある要素rootに対し，操作xの種類ごとのroot −−x−−> root'が成り立つ条件conditionおよ

び操作の結果root'の組み合わせを表1に示す．条件access（perms, file）は操作パスに要

素fileが存在し，それに対し操作ユーザがpermsに含まれる全ての権限を持つことを表す．条

件uidは操作ユーザが管理者もしくは操作パスに存在するファイルの所有者であることを表

す．条件parentは操作パスの親ディレクトリに対し書き込み権限を持つことを表す．条件

noneは操作パスが未定義であることを表す．upd（file）は操作パスに位置する要素をfileで

置き換えた要素，updnoneは操作パスに位置する要素を削除した要素を表す．fchmodは操作パス

に位置する要素fileに含まれるatt型のレコード値について，そのフィールドothersの値を
permsで置き換えて得られる新しい要素を表す．fcreatおよびfmkdirはどちらもファイルの属性と
してuidとpermsを持つ，空のプレーンファイルおよび空のディレクトリを表す．
任意の要素rと操作xに対し，r −−x−−> r'を満たすr'が一意に定まることが示せる．操作の

列xsについて，要素rを根としてxsの操作を先頭から順に行った結果がr'である関係transi-
tions r xs r'が定義され，その略記としてr ==xs==> r'を用いる．

2．4削除不能性を表す不変条件

原形式化では，UNIXファイルシステムで生じる特殊な状況の例として，あるユーザが所有

するディレクトリの要素がそのユーザ自身の操作のみでは削除不能となる状況を示している．

以降このユーザをuser1で表し，このユーザは管理者ではないものとする．すなわちuser1≠

5UNIXファイルシステムの形式化における不変性の拡張と一般化

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 5

0とする．このuser1にとっての削除不能性を表す命題は，特定の要素rootおよびそこからの
パスpathについての述語invariantとして，次のように表される．
定義（削除不能性）．user1をあるユーザとする．このユーザにとっての要素rootにおけるパ
スpathの削除不能性invariant root pathとは，rootにおいてパスpathに空でないディ
レクトリが存在し，user1はそのディレクトリの所有者ではなく，そのディレクトリへの書き
込み権限も持たないことである．

invariant root path��
（∃att dir. access root path user1{} = Some（Env att dir）�dir�� Map.empty�

user1�� owner att�access root path user1 Writable = None）

以降，この性質におけるパスpathを削除不能パス，このパスに存在する空でないディレク
トリを削除不能ディレクトリと呼ぶ．要素rootの直下にuser1が書き込み可能なディレクト
リh1が存在するものと仮定すると，rootに対し実行することでこの性質が成り立つような状
態に至る操作列の例として，次のものが考えられる．

x condition root′
Read uid text path access（{Readable}，Val（att，text）） root
Write uid text path access（{Writable}，Val（att， text’）） upd（Val（att，text））
Chmod uid perms path access（{}，file）and uid upd（fchmod）
Creat uid perms path parent and none upd（fcreat）
Unlink uid path parent and access（{}，Val plain） updnone
Mkdir uid perms path parent and none upd（fmkdir）
Rmdir uid path parent and access（{}，Env att’Map.empty） updnone
Readdir uid names path access（{Readable}，Env att dir）and

names = dom dir
root

上記の表においては，次の表記を用いている．
access（perms，file） access root path uid perms = Some（file）
uid uid = 0�uid = owner（attributes file）
parent path = parent_path @ [name] and

access root parent_path uid {Writable} = Some（Env att parent）
none access root path uid {} = None
upd（file） update path（Some file）root
updnone update path None root
fchmod map_attributes（others_update（�_.perms））file
fcreat Val（（|owner = uid，others = perms|），[]）
fmkdir Env（|owner = uid，others = perms|）Map.empty

表1：操作の種類ごとの成立条件

佐 藤 晴 彦6

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 6

[Mkdir user1 {Writable} [h1，d1］，Mkdir user2 {} [h1，d1，d2］，
Creat user2 {} [h1，d1，d2，f]]

ここでuser2はuser1とは異なるユーザとする．この命令列をxsとすると，root ==xs==>

root'のとき，invariant root'［h1，d1，d2］が成り立つ．すなわち，user2が作成したd
2が削除不能ディレクトリである．
ある要素rootとそこからのパスpathについてこの削除不能性が成り立つとき，その要素に

対しuser1がいかなる操作を実行した結果に対しても，同じパスにおいてこの性質が成り立
つ．このことは次の命題preserve_invariantとして表される．

lemma preserve_invariant：
assumes "root −−x−−> root’" and "invariant root path" and "uid_of x = user1"

shows "invariant root’path"

この命題が成り立つこと，すなわちuser1にとっての削除不能性invariantがuser1によ
る操作に対する不変条件であることは，user1はpathに存在するディレクトリを自身の操作
のみでは削除できないことを意味する．

原形式化におけるこの不変条件の証明においては，削除不能パスに対する操作パスの相対位

置について並行，一致，上，下の4通りの場合分けを行っている．並行の場合は操作が影響を

与えないことから不変性が容易に示せる．また削除不能ディレクトリが非空かつ所有者が

user1でないことより，操作パスが削除不能パスと一致する場合は起こり得ないことが示せ
る．また操作パスが上の場合はそれより下のパスの不変性により示される．操作パスが下の場

合が最も記述量が多く，約30ステップからなる記述の大半は，削除不能ディレクトリが操作後

に空でないことの導出である．

3 形式化の拡張

本節では，原形式化をもとに本研究で新たに証明する性質について述べる．またそれらの性

質を用いて，削除不能性における削除不能ディレクトリが空でないことの証明に有用な補題が

得られることを示す．以降の説明においては，各性質についての実際の形式化のうち命題部分

のみを示し，証明部分は省略する．

3．1木の更新に関する性質

update関数による更新の正しさを表す自然な性質として，更新が確かになされているこ
と，すなわちある値xで更新したパスを直ちにlookup関数で参照するとそのxが得られること

7UNIXファイルシステムの形式化における不変性の拡張と一般化

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 7

がある．原形式化においてはファイルを表す値Some fによる更新の場合についての性質のみ
を示していたが，これは削除を表す値Noneによる更新についても同様の性質が成り立つ．た
だし，空のパスに対するNoneでの更新は値の維持を意味するため，パスが空ではないという
条件が必要となる．そのような性質は次のように表される．

lemma assumes "lookup env path = Some file" and "path ≠[]"

shows "lookup（update path None env）path = None"

これにより，定義済みかつ空でないパスの更新と参照について，更新に用いる値の種類によ

らない次の一般的な性質が得られる．

lemma assumes "lookup env path = Some file" and "path ≠[]"

shows "lookup（update path opt env）path = opt"

また類似の性質として，未定義パスに対して新たに追加したノードが参照により得られるこ

とがある．この場合，その未定義パスの親がディレクトリである必要がある．

lemma assumes "path = parent @ [name]" and "lookup env parent = Some（Env b es）"

shows "lookup（update path（Some env’）env）path = Some env’"

入れ子構造を表すenv型は再帰的・非破壊的に定義される代数的データ型であるため，ある
パスに位置するノードの更新はそれより上に存在するすべての内部ノードの再構築を伴う．し

かしながら，それらの各内部ノードEnv b esのうち更新されるのは部分関数esのみであり，
ノードに付随する値bは不変である．このことは次の命題で表される．

lemma assumes "lookup env xs = Some（Env b es）"and "strict_prefix xs ys"

obtains es’where "lookup（update ys opt env）xs = Some（Env b es’）"

ファイルシステムの操作という観点では，内部ノードの付随値はディレクトリのアクセス権

限を表すため，この命題はプレーンファイルやディレクトリを更新した場合も，それより上に

位置するディレクトリのアクセス権限は不変であるという，自然な性質に対応する．

3．2終端パスとその性質

プレーンファイルと空のディレクトリは，それが存在するパスは定義済みであるが，そのパ

スよりも下のパスは未定義であるという点で特徴的である．よって，そのような要素を終端要

素と呼び，それらが存在するパスを終端パスと呼ぶものとする．ある要素が終端要素であるか

否かを判定する述語terminalを次のように定義する．

佐 藤 晴 彦8

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 8

fun terminal where
"terminal（Val _）＝ True" | "terminal（Env _ es）＝（es = Map.empty）"

これを用いて，終端パスを表す述語terminal_pathを次のように定義する．

definition terminal_path where
"terminal_path root path ＝（∃env. lookup root path = Some env�terminal env）"

終端パスより下のパスが未定義となることを表す，次の性質が成り立つ．

lemma "terminal_path root path �� lookup root（path @ y # ys）＝ None"

未定義パスに対する操作と終端パスとの関係について述べる．まず，未定義パスに対して実

行可能な操作はCreat，Mkdirのいずれかのみである．

lemma assumes "root −−x−−> root’" and "lookup root（path_of x）＝ None"

shows "（∃uid perms path. x = Creat uid perms path）
�（∃uid perms path. x = Mkdir uid perms path）"

この2種類の操作それぞれを行ったとき，操作パスは終端パスとなる．

lemma "root−−（Creat uid perms path）−−> root’�� terminal_path root’path"

lemma "root−−（Mkdir uid perms path）−−> root’�� terminal_path root’path"

以上より，未定義パスに対して操作を行ったとき，操作パスは操作後に終端パスとなる．

lemma assumes "root −−x−−> root’" and "lookup root（path_of x）＝ None"

shows "terminal_path root’（path_of x）"

3．3操作に対する不変性

8種類の操作のうち，読み取り操作に相当するRead，Readdirの2つは要素を変化させな
い．一方，残りの6種類の操作はその対象とするパスに対しノードの追加・更新・削除を行

う．操作パスと並列なパスについての不変性は原形式化において示されているが，操作パスよ

り上や下の位置についても，ある種の不変性を示すことができる．これらは削除不能性の証明

においても重要な役割を果たす．

9UNIXファイルシステムの形式化における不変性の拡張と一般化

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 9

3．3．1操作パスよりも上の位置の不変性

操作パスは何らかのファイル・ディレクトリ要素が既に存在する，もしくは新たに要素が作

成されるパスであるから，ある操作が実行可能であるとき，その操作パスより上のパスの要素

はディレクトリであることが示せる．また3．1節で示した木の更新における内部ノードの付随

値の不変性より，そのディレクトリの属性は不変であることが示せる．

lemma assumes "root −−x−−> root’" and "strict_prefix path（path_of x）"
obtains att dir dir’where

"lookup root path = Some（Env att dir）"
and "lookup root’path = Some（Env att dir’）"

3．3．2操作パスよりも下の位置の不変性

原形式化における削除不能性の証明において，操作パスよりも下のパスが定義済みである場

合の不変性が示されている．これを補題として独立させると次のように表される．

lemma assumes "root −−x−−> root’" and "strict_prefix（path_of x）path"

and "lookup root path = Some file"

shows "lookup root’path = Some file"

これと同様に，未定義パスについての不変性を考える．木の内容や構造を変化させる6種類

の操作のうち，ノードの更新を行うWrite，Chmodは木の構造を維持するため，そのノードの
下の未定義性も維持される．また未定義パスに対しノードの追加を行うCreat，Mkdirは操作
後にその位置が終端パスとなるためその下は未定義となる．残りの削除操作Unlink，Rmdir
は操作後にその位置が未定義となるためその下も未定義となる．よって操作パスよりも下の未

定義パスについても，操作に対する不変性すなわち操作後もその位置が未定義であることを示

せる．

lemma assumes "root −−x−−> root’" and "strict_prefix（path_of x）path"

and "lookup root path = None"

shows "lookup root’path = None"

証明においては，操作パスが未定義か定義済みか，また定義済みの場合はプレーンファイル

かディレクトリかの場合分けを行っている．その中の未定義の場合において，3．2節で示した

未定義パスが終端パスとなる性質を利用している．

定義済み・未定義の両方の場合の不変性より，操作パスよりも下の位置の一般的な不変性が

佐 藤 晴 彦10

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 10

得られる．

lemma assumes "root −−x−−> root’" and "strict_prefix（path_of x）path"

shows "lookup root path = lookup root’path"

3．4不変性の応用

操作パスより下のパスの不変性より，操作の前後で変化するのは操作パスより上，すなわち

根から操作パスまでの間に存在する要素のみである．したがって，ある操作の前後で何らかの

要素が変化した場合，その操作パスは変化した要素のパスと同一かそれより下であることが示

せる．

lemma assumes "root −−x−−> root’" and
"lookup root path�� lookup root’path"

shows "prefix path（path_of x）"

この性質より，削除可能性の証明において本質的であり，かつ直感的に理解しやすい次の補

題が示される．ある操作によって特定のディレクトリが非空から空に変化した場合，操作の実

行者はそのディレクトリへの書き込み権限を持ち，その操作パスはディレクトリ直下である．

lemma assumes "root −−x−−> root’" and
"lookup root path = Some（Env att dir）" and
"lookup root’path = Some（Env att’dir’）" and
"dir�� Map.empty" and "dir’= Map.empty"

shows "access root path（uid_of x）Writable ≠ None"

and "∃name. path_of x = path @ [name]"

形式証明の概略を述べる．ディレクトリが操作前に空でないことから，その直下のパスのう

ち削除操作の対象を表すパス，すなわち操作前は定義済みで操作後は未定義となるものが存在

する．これより，操作パスがディレクトリ直下であることは，

�前述の補題より，操作パスがディレクトリ直下かそれより下であること

�操作パスがディレクトリ直下より下であるとすると，操作パスより上の不変性よりディ

レクトリ直下が操作前・操作後共にディレクトリとなり，操作後に未定義であることと

矛盾

から直ちに従う．そのパスに対する操作が成立する条件より，その親ディレクトリへの書き込

み権限を持つことも直ちに導かれる．

11UNIXファイルシステムの形式化における不変性の拡張と一般化

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 11

この補題を利用すると，削除不能性の不変性を表す命題preserve invariantの証明にお
ける4通りの場合分けのうち操作パスが削除不能パスより下の場合において，削除不能ディレ

クトリが空でないことが容易に導かれる．具体的には，原形式化においてstrict_prefix
path（path_of x）を仮定してから削除不能ディレクトリが空でないことを導くまでの20ス
テップ程度の推論を，補題を用いた2ステップで置き換えることが可能となる．

4 おわりに

本論文では，WenzelによるUNIXファイルシステムの形式化において成り立つ性質の拡張と

して，木の更新結果が参照により得られる性質，ファイルやディレクトリのパスの新規作成操作

の対象パスが終端パスとなる性質，また操作パスに対して並列でない位置が不変である性質を

示した．またこれらの性質を用いて，形式化の重要な結論である削除不能性の証明において有用

となる，ディレクトリを空にする操作と書き込みアクセス権限との関係を表す補題を示した．

今回の証明においてはいくつかの箇所で，8種類のどの操作に対しても成り立つ性質を示す

際にcasesメソッドによる場合分けを用いている．場合分けによるサブゴール生成に引き続き
それら全ての証明を完了させる十分強力なメソッドを適用することで，簡潔かつ操作の種類の

拡張に対し頑強な証明が構成できる．一方，各操作においてなぜその性質が成り立つのかを説

明する記述としては，そのような簡潔な証明は不十分である．より一般的には，by（cases,

use lemmas in method）のような記述からは，利用を明示した補題lemmasや全体に適用する

強力な手法methodの特徴が，casesが生成するどのサブゴールにおいて重要であるかが読み
取れないという問題がある．簡潔かつ可読性の高い記述を行うためには，証明方針の共通性に

従いサブゴールを分類し，グループごとに証明を記述するための機能が必要となると考えられ

る．

定理証明支援システムを用いた形式検証の意義は，期待される性質が成り立つことを厳密に

保証できる点に留まらず，性質の証明を通してその根拠である仕様の妥当性について確信を深

められる点も大きい．仕様に膨大な場合分けを本質的に含む大規模なソフトウェアの形式検証

において，場合分けにより生じる関連の深い小問題群を証明上で整理し理解を支援する機能の

更なる整備は今後の課題であると考えられる．

参考文献
1）Gerwin Klein, et al. : seL4 : Formal verification of an OS kernel, Proceedings of the ACM SIGOPS 22nd sympo-

sium on Operating systems principles, 2009.

2）Xavier Leroy : Formal verification of a realistic compiler, Communications of the ACM, Volume 52, Issue 7, 2009.

3）MakariusWenzel : Some aspects of Unix file−system security, Isabelle/Isar proof document :

https : //isabelle.in.tum.de/dist/library/HOL/HOL−Unix/outline.pdf, 2001.

佐 藤 晴 彦12

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 12

4）Tobias Nipkow, Programming and proving in Isabelle/HOL, Part of the Isabelle documentation :

https : //isabelle.in.tum.de/doc/prog−prove.pdf, 2025.

5）Makarius Wenzel et al : The Isabelle/Isar manual, Part of the Isabelle documentation :

http : //isabelle.in.tum.de/doc/isar−ref.pdf, 2025.

13UNIXファイルシステムの形式化における不変性の拡張と一般化

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／001～013　ＵＮＩＸファイルシステム 2025.12.09 10.43.45 Page 13

海学園大学工学部研究報告　　　150線／第53号　本文マット／本文　，．　ＯＴＦ／014　　　　　しろしろ 2025.12.09 10.43.46 Page 14

	00001_p1
	00002_p2
	00003_p3
	00004_p4
	00005_p5
	00006_p6
	00007_p7
	00008_p8
	00009_p9
	00010_p10
	00011_p11
	00012_p12
	00013_p13
	00014_p14

